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A B S T R A C T   

Last-mile delivery has several negative environmental impacts in urban areas because of its high levels of 
greenhouse gas emissions and air pollution, as well as traffic congestion. These issues motivate decision-makers 
to redesign the delivery networks and make them more sustainable and efficient. A well-planned territory design 
can reduce total travel times and distances in urban distribution systems, in addition to balancing the workload 
between drivers. In this study, a two-echelon parcel distribution network modeled as the two-echelon vehicle 
routing problem with territory design and satellite location decisions is considered. A three-stage decomposition 
algorithm is proposed to solve this problem. In the first stage, a non-supervised machine learning clustering 
method is applied, followed by an algorithm based on the nearest-neighbor routing procedure, to find a set of 
routes for the second and first echelons. An improvement heuristic was also applied to improve the results in 
terms of the second echelon routing, considering the computational complexity of a large-scale instance. A case 
study based on real data from a delivery company in the city of Paris, France is adopted to perform the ex-
periments. The outcomes of this paper show an improvement of 22.6% in travel time and distance. This reduction 
is also assessed with performance indicators like land use, fixed costs, energy consumption, carbon dioxide 
equivalent, and fine particles emissions.   

1. Introduction 

More than 50% of the world’s population resides in urban areas (Bac 
& Erdem, 2021). As the world population increases, the demand for 
parcels and commodities will increase. Moreover, in the last few years, 
an expansion of e-commerce has been taking place worldwide, reaching 
a growth of approximately 21% (Statista, 2020). Numerous products are 
available, and deliveries can be received at the customer’s home, office, 
or mailbox (Kull et al., 2007). Although the transportation and mobility 
sectors are essential for meeting the increase in demand, last-mile de-
livery accounts for up to 28% of the total delivery costs (Wang et al., 
2016). In addition, urban parcel delivery activities are the source of 
approximately 25% of CO2 emissions, 30% of NOx emissions, 40% of 
energy consumption, and 50% of particle matter (Dablanc, 2011; 

Schoemaker et al., 2006). According to the World Health Organization 
(WHO), no less than 91% of the world’s population is exposed to poor air 
quality that exceeds WHO guideline limits (Tahami et al., 2020). All 
these externalities highlight the need for sustainable urban delivery 
planning (Pamucar et al., 2022). 

Different city logistics initiatives and strategies have been developed 
and modeled to improve efficiency, relieve traffic congestion, and 
reduce greenhouse gas (GHG) emissions (i.e., the addition of satellite 
distribution centers and urban logistic centers) (Crainic & Sgalambro, 
2014; Meza-Peralta et al., 2020). Two-echelon distribution is the most 
common model used to design last-mile supply networks. It consists of 
delivering parcels from a depot to a set of satellites, and from there, to a 
set of geographically dispersed customers. Practitioners and academics 
frequently approach this logistics distribution problem as a two-echelon 
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vehicle routing problem (2E-VRP) (Crainic et al., 2004). Owing to the 
high computational complexity of the problem, many researchers are 
motivated to design and propose approximate algorithms (heuristics and 
metaheuristics) to solve it. 

Moreover, territory design (TD) or districting involves the grouping 
of small geographic zones into larger areas, called territories. These 
territories must accomplish a set of planning criteria according to the 
given context. Planning criteria, such as contiguity and compactness, are 
widely used to reduce distances and travel times within a territory. 
Reductions in these two indicators also represent benefits for the com-
panies in terms of operating costs (Lespay & Suchan, 2022). Among the 
different applications, the design of territories, especially in last-mile 
logistics, is one of the most relevant ones (Kalcsics & Ríos-Mercado, 
2019). It is a common practice among logistic operators to divide urban 
areas into delivery zones, which comprise households and commercial 
and institutional customers, and to assign these zones to one or more 
distribution centers that will deliver the parcels to the corresponding 
clients (Sandoval et al., 2022). TD allows companies to determine the 
best way to serve and respond quickly to customer demand, standardize 
service quality, and organize an efficient and equitable allocation of new 
customers among distribution centers. Most approaches for TD employ 
mathematical modeling or heuristic procedures. However, with the in-
crease in available data, machine learning may help improve the current 
procedures. 

The contributions of this paper are threefold. First, we present a non- 
supervised machine learning clustering method to implement districting 
design for many geographically dispersed customers. This approach is 
relevant to parcel delivery problems in megacities, such as Paris, France, 
which is the case considered in this paper. Second, we design delivery 
routes to optimize the total delivery time in the city. We propose a 
heuristic algorithm with a three-stage decomposition strategy to deal 
with the high computational complexity of the 2E-VRP. The heuristic 
algorithm contains the TD in the first stage, followed by an algorithm 
based on the well-known nearest-neighbor (NN) routing heuristic 
(Taiwo et al., 2013), which is implemented in the first and second 
echelons to generate the routes. Additionally, a local search operator is 
applied to improve the solution in the second echelon, which is the more 
complex one. Finally, to run the experiments, we adopted a case study 
with a real-world large-scale instance, involving an urban distribution 
system at a major French delivery company in the city of Paris, France. 
Performance indicators, such as carbon dioxide equivalent (CO2e), fine 
particle emissions, fixed costs, land use, and energy consumption are 
used to assess the sustainability of the delivery system. 

The remainder of this paper is organized into five sections. In the 
next section, we review the related literature. The third section discusses 
the methodology applied to our research. The fourth section presents the 
computational experiments using the case study of Paris, France, and the 
results are analyzed. The last section concludes the paper and outlines 
several perspectives for future research. 

2. Literature review 

The study of TD problems has its origins in urban modeling ap-
proaches, first studied in the 1960 s, mainly using mathematical models 
(Southworth, 2011). In urban planning, the TD or regional planning 
problem is defined as the problem of grouping small geographic areas 
called basic units (BU) –such as counties, zip codes, or customers– into 
larger geographic clusters called territories, in such a way that these 
territories are acceptable according to relevant planning criterion. 
Depending on the context, these considerations can either be economi-
cally motivated (e.g., average sales, workload, and number of cus-
tomers) or have a demographic background (e.g., number of inhabitants 
and voting population). Moreover, some spatial constraints, like conti-
guity and compactness, are often required. Notably, the literature often 
uses the term territory alignment instead of TD. 

Other names given to this problem in the literature are territory 

project, automatic zoning design, land allocation, (re)districting, region 
partitioning, and geographical deployment (Freire de Sousa et al., 
2012). This is an important problem that is present in a great number of 
geographic projects and has potential application in various subjects, 
such as the establishment of political districts, location of schools, trash 
collection, social services (health centers, hospitals, etc.), emergency 
services, maintenance teams, sales, and distribution of products. This 
last application is relevant to supply chain management. An interesting 
evaluation of several application areas for TD was reported by Kalcsics 
et al. (2005). 

The TD problem has been largely studied since the 1960 s, and 
several models and techniques have been proposed to solve it. Most of 
these approaches are based on set covering or set partitioning formu-
lations (Lopez, 2012; Freire de Sousa et al., 2012), where the objective 
function minimizes the sum of the distances. In most cases, these models 
are solved using integer programming techniques that are often sup-
ported by column generation methods. In general, to solve large-scale 
problems, the allocation phase can be tackled by relaxing the inte-
grality constraints on the assignment variables (i.e., binary variables). 
However, this procedure usually assigns portions of the BUs to more 
than one territory center, which is not desired. More recently, meta-
heuristics have been applied to the set covering and the set partitioning 
problems, with promising results. The works of Freire de Sousa et al. 
(2012) and Lopez (2012) provide a complete review of the basic con-
cepts of TD problem approaches and algorithms. Some (hybrid) meta-
heuristics procedures have also been used. We refer the reader to the 
works of Freire de Sousa et al. (2012) and Kalcsics and Ríos-Mercado 
(2019) for comprehensive reviews. 

In logistics and supply chain management, several applications of the 
TD problem can be found in the literature, mainly related to sales and 
marketing applications or product distribution. The problem is mainly 
approached as a vehicle routing problem (VRP). Haugland et al. (2007) 
studied the case of district design for a VRP with stochastic demands, in 
which actual demands are revealed only after the districting decisions 
are made. The objective was the minimization of the expected routing 
cost. Both tabu search and multi-start heuristics were proposed, and 
their experiments showed that tabu search outperforms multi-start in 
terms of solution quality. A case in the bottled beverage industry was 
studied by Ríos-Mercado and Salazar-Acosta (2011). These authors 
proposed a greedy randomized adaptive search procedure (GRASP) to 
simultaneously consider the design and routing decisions. Another case 
study, taken from the package shipping industry, was examined by 
Schneider et al. (2014), who also investigated the impact of time win-
dow constraints. Their analyses showed that incorporating time window 
characteristics and historical demand data does not lead to a perceptible 
improvement in the solution quality. The work of Lei et al. (2012) 
included regular and stochastic customers and proposed a large neigh-
borhood search heuristic, which was tested on modified Solomon in-
stances for vehicle routing. Later, Lei et al. (2015) studied the multiple 
traveling salesman problem and the districting problem with multiple 
periods and multiple depots. An adaptive large neighborhood search 
metaheuristic was developed. Furthermore, a multi-objective evolu-
tionary algorithm was proposed by Lei et al. (2016) to solve a multi- 
objective dynamic stochastic districting and routing problem in which 
the customers of a territory stochastically evolve over several periods of 
a planning horizon. Zhou et al. (2021) addressed a case study in the 
dairy sector. 

In VRP, Moreno et al. (2020) introduced a case study for meat dis-
tribution. The routing problem was modeled as a VRP, and candidate 
districts were generated using a modified k-means heuristic that evalu-
ates the time required to deliver goods within the district. The districting 
plan is then obtained by solving an integer programming formulation. 
Within the scope of this research, few papers applying data science 
clustering methodologies, like k-means, were found in the literature on 
2E-VRP, especially to deal with large-scale instances. Clustering ap-
proaches can be useful to reduce the computational complexity in large- 
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scale logistics networks (Defryn & Sörensen, 2017; Expósito-Izquierdo 
et al., 2016). In two-echelon distribution systems and the 2E-VRP, we 
identified the works of Wang et al. (2018, 2020, 2021). For instance, 
Wang et al. (2021b) considered three-dimensional k-means clustering 
using a customer’s geographic coordinates (x,y) and a time parameter 
(z) that denotes the value of each service time window interval to solve 
an initial part of a two-echelon distribution system. A summary of the 
related works is presented in Table 1, and a comparison with our 
approach is presented. The classification was performed in terms of 
existing solution approaches, objective functions, instance size, and if a 
case study was considered. Heuristic methods have been the most 
commonly used approaches to solve the 2E-VRP and its variants, and the 
most studied objective function is the minimization of costs. 

As a background of our previous work, we addressed the 2E-VRP 
using a case study in the city of Paris, France with more than 90,000 
delivery points, in which two strategies were considered for urban 
parcel delivery (Ramirez-Villamil et al., 2022). In strategy 1, each dis-
trict of Paris has a satellite randomly located within the same arron-
dissement and can only serve customers belonging to the same assigned 
area. Strategy 2 involved the grouping of the 20 districts by geographical 
proximity and computing size, resulting in 10 groups. Then, a decom-
position algorithm based on the NN search heuristic was applied as a 
solution approach for both strategies, and the best results were obtained 
using the clustering strategy. For future work, it was suggested that the 
design of other solution procedures may allow for improvement. Based 
on this perspective, an unsupervised machine learning method called 
the two-dimensional k-means (2D-k-means) clustering algorithm com-
bined with a NN routing procedure was applied to obtain initial solu-
tions for a problem-instance of 50 delivery points (Ramirez-Villamil 
et al., 2022). Then, two local search operators were introduced and 
compared with improve the initial solution. 

In the current work, the case of Paris is also considered. Since it is a 
large-scale instance, the 2D-k-means approach was applied to cluster the 
delivery points more efficiently. In this approach, the centroid of each 
cluster will become the satellite that serves the cluster. Moreover, based 
on the research perspective mentioned before, the addition of an effi-
cient local search operator can improve the results, which may be 
similar to those obtained with strategy 2 proposed in our previous study, 
improving the operations of the case study company further. 

3. Methodology 

Approximate algorithms, such as heuristics and metaheuristics, are 
needed to solve combinatorial optimization problems and find feasible 
solutions with a reasonable computational time. Owing to the NP- 
hardness of the 2E-VRP, decomposition strategies have been applied 
recently to deal with large-scale real-world problems (Flaberg et al., 
2006). Hence, this paper proposes to solve this problem using a 
decomposition algorithm. In some studies, the solution is divided into 
two parts (the initial solution phase and the optimization phase) (Du & 
He, 2012), but in other cases (e.g., Muñoz-Villamizar et al., 2015; 
Ostertag et al., 2009; Ramirez-Villamil et al., 2022), the problem is split 
into subproblems that are solved separately. We followed this last 
approach by splitting the problem into three subproblems to reduce the 
computational complexity of a large-scale instance while guaranteeing 
the feasibility and quality of the solution by aggregating the sub-
problems. The three subproblems are:  

1. Territory clustering (allocation of delivery points to the satellites) 
using a non-supervised clustering machine learning approach.  

2. Route design for last-mile delivery (second echelon of the network).  
3. Route design for the first echelon (from the depot to the satellites). 

The routes of the second echelon are determined first because, after 
solving the routing of the second echelon, the corresponding demand of 
each satellite can be calculated as the sum of the demand of the 

customers clustered and served by second echelon routes departing from 
the same satellite. Once the demand for each satellite is known, the 
routes of the first link are constructed. Sluijk et al. (2023) and Belgin 
et al. (2018) also considered this strategy in their solution methods. 

3.1. First subproblem: Territory clustering 

In the 2E-VRP, the depots and customers are connected by a set of 
intermediate depots called satellites. Satellites can be an urban consol-
idation center, an urban distribution center, “a warehouse, a trans-
shipment site or a cross-docking facility (no storage offered)” 
(Cattaruzza et al., 2017). These types of facilities are located within the 
city and are added to the conventional distribution networks to increase 
the efficiency of parcel delivery processes from the depot to the cus-
tomers. It is important to have territorial planning strategies to locate 
the satellites in appropriate areas and ensure the maximum coverage of 
the distribution network so that each delivery point can be allocated to 
one of the satellites. 

Data science methodologies have been extensively applied in 
different fields. Customer clustering is an effective strategy to reduce the 
computational complexity of optimization problems (Cinar et al., 2016; 
Ho et al., 2012; Zhu et al., 2019) and improve the calculation efficiency 
for large-scale logistics networks (Defryn & Sörensen, 2017; Expósito- 
Izquierdo et al., 2016). In practice, clustering methodologies can help in 
the design of urban parcel distribution networks, enabling some 
geographic clustering of the territory where customers are located in 
city areas, to effectively place satellites in the optimal locations. In the 
literature, k-means clustering can address the capacitated vehicle rout-
ing problem (CVRP) with initial solutions for vehicle routing optimiza-
tion (Luo & Chen, 2014). In this paper, we built upon our previous work 
(Ramirez-Villamil et al., 2022). 

The first subproblem involves the allocation of the delivery points 
(customers) to predetermined satellites. A non-supervised machine 
learning method called 2D-k-means clustering is used before route 
optimization to reduce the computational complexity (see Algorithm 1). 
We consider the two dimensions of each customer’s geographic location 
(latitude and longitude); k-means clustering traditionally groups cus-
tomers into different clusters based on the two-dimensional Euclidean 
distance (Wang et al., 2018, 2020). Let k denote the number of clusters 
to be defined, which corresponds to the number of satellites in the dis-
tribution network. The centroid for each cluster k is randomly selected. 
All the data is processed, and the distances from each customer to the 
centroids are calculated. Then, each element is assigned to its closest 
cluster centroid, and the new centroids of k clusters are updated. This 
algorithm continues until all customers are adjusted in the adequate 
cluster. Finally, the results of the clustering are saved and become the 
inputs to calculate the initial solution for the routing optimization 
(second and third subproblems).  

Algorithm 1: K-means algorithm 

K-means (data, k, ε):t = 0Randomly initialize k centroids: 
μt

1, μt
2⋯, μt

krepeatt←t+1Ci←∅ for all i = 1,⋯,k// Cluster assignmentforeach xj in 

data doi*← argmini 

{
‖xj − μt− 1

i ‖
2
}

Ci←Ci* ∪
{
xj
}

// assign xj to the closest 

centroidend foreach// Centroid updateforeach i = 1,⋯, k doμt
i ←

1
|Ci|

∑

xj∊Ci

xjend 

foreachuntil 
∑k

i=1‖xj − μt− 1
i ‖

2
≤ εreturn Ci, μt

k  

3.2. Second subproblem: Last-mile delivery routing 

The second subproblem determines the routing from satellites to 
serve the customers (last-mile delivery). A decomposition strategy is 
implemented in which each cluster is modeled as a CVRP. Considering a 
large number of delivery points, the initial solution is obtained by 
applying an algorithm based on the NN routing procedure (Taiwo et al., 
2013). Although metaheuristics are more complex and sophisticated 
algorithms that can provide accurate solutions, they can be 
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Table 1 
Classification of the literature related to 2E-VRP.   

Objective function Solution approach   
Reference Fuel 

consumption 
Service 
waiting 
times 

Emissions Distance Cost N◦ of 
vehicles 

Travel 
time 

Heuristic Exact 
approach 

Simulation Method Case 
study 

Instance 
size 

This paper    x   x x   2D-k- means algorithm, NN heuristic, and RLS 
as the improvement phase 

x Large 

(Zuhanda et al., 
2022) 

x    x   x   K-means clustering and 2-opt algorithm  Medium 

(Ramirez- 
Villamil et al., 
2022)       

x x   2D-k-means algorithm, NN heuristic, and two 
options of local search operators  

Small 

(Ramirez- 
Villamil et al., 
2022)       

x x  x Decomposition algorithm based on the NN x Large 

(Liu et al., 2022)   x  x   x   Clustering-based artificial immune algorithm (C- 
AIA) immune operator with the genetic algorithm  

Small- 
medium 

(Wang et al., 
2021)  

x   x x  x   3D-k-means and improved reference point-based 
non-dominated sorting genetic algorithm-III (IR- 
NSGA-III) 

x Small- 
medium 

(Wang et al., 
2018)   

x  x   x   K-means algorithm and an improved Non- 
dominated Sorting Genetic Algorithm-II (Im- 
NSGA-I) 

x Small- 
medium 

(Marinelli et al., 
2018)     

x    x  Fuzzy C-Means Clustering improved with roulette 
selection, 2-opt, and Or-opt exchange heuristics  

Small- 
medium 

(Belgin et al., 
2018)     

x   x   Hybrid heuristic based on variable neighborhood 
descent (VND) and local search (VND_LS) 

x Medium- 
large 

(Li et al., 2016)   x     x   Clarke & Wright Savings Algorithm (C&W) with a 
local search phase (relocate and λ-interchange). 

x Large 

(Zeng et al., 
2014)     

x   x   GRASP and VND (GRASP + VND)  Small  
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computationally expensive, especially for large instances. Heuristic ap-
proaches achieve reliable solutions in a fraction of the computing time 
for a large class of optimization problems and are the only way to find 
solutions to an even larger number of real-world optimization problems 
(Sörensen, 2015). For example, the NN heuristic has been widely used 
for solving the VRP (Lima et al., 2018; Solomon, 1987). It has been 
proven that it can be efficient for solving this problem, especially for 
large-scale instances (Karaoğlu & Kara, 2022; Privé et al., 2006; Rose-
nkrantz et al., 2009). Furthermore, the NN has been used to build 
reasonable initial solutions that are then improved by local search 
strategies (Brandão, 2004; Du & He, 2012). The pseudocode of the 
proposed NN routing algorithm for the second and third subproblems is 
presented as Algorithm 2. Then, a relocate local search (RLS) phase that 
contains inter- and intra-route operations is applied to improve the 
initial solution given by the NN in the second echelon. 

In the literature, different types of local search operators have been 
used to solve routing problems. In this case, a relocate operator is pro-
posed as a local search for neighborhood solutions. RLS aims at shifting a 
node in route n, before or after another node in a different route, but 
considering that both routes belong to the same cluster. Fig. 1 presents 
an example of this local search. Two routes in the same cluster are 
selected. The first route, denoted as “S-A-B-C-D-S,” is selected as the 
route that contains the node to be evaluated for relocation (e.g., node A). 
The relocation of node A in the first position in the route denoted as “S-E- 
F-G-H-S” is evaluated. The criteria to accept the insertion of the node in a 
specific route is twofold: (i) if the demand of node A does not exceed the 
maximum capacity of the vehicle in the destination route and (ii) if the 
insertion of that node into the route gives the greatest improvement of 
all feasible combinations (between all nodes and all possible positions) 
in terms of distance, the improvement in travel time can also be 
observed because travel time is calculated based on the distance and 
average speed in the city. If node A meets both criteria, the node is 
finally relocated, and the new routes “S-B-C-D-S” and “S-A-E-F-G-H-S” 
are constructed. It should be noted that the insertion does not yield 
infeasible solutions because verification of the feasible elements is made 
before the insertion, for instance, checking that the capacity of the 
vehicle is not exceeded and only adding the node to the route if the 
optimal improvement is obtained. If an infeasible insertion is detected, 
the movement is ignored.  

Algorithm 2: NN search procedure 

Nearest neighbor (Dm, demand, maxCap):visited ←∅route ←∅routes ←∅ for all i =
len (Dm)distance = 0capacity = 0vehicles = 1repeat// Nearest-neighbor 
minimum distance assignmentminDistance ← argmin (Dm) where node in Dm not in 

(continued on next column)  

(continued ) 

Algorithm 2: NN search procedure 

visited and > 0node ← node of minDistance// Check vehicle capacityif capacity <
maxCap thenroute append nodevisited append nodecapacity ← capacity + demand 
in node positiondistance ← distance + minDistanceelse if capacity ≥ maxCapacity 
thenvehicles ← vehicles + 1routes append route // Add route to the routes 
arrayroute ←∅capacity = 0end ifuntil len (visited)≤ len (Dm)if route is not ∅ 
thenroutes append routeend ifreturn routes, distance, vehicles  

3.3. Third subproblem: Routing from depots to satellites 

The third subproblem involves the first echelon routing. The aim is to 
find a set of routes starting from the depots to serve the corresponding 
satellites. The quantity of parcels (expressed in kilograms) required to be 
delivered to each satellite is obtained from the total demand of the 
customers of cluster k. The distance traveled, the total travel time, and 
the routes in the first echelon are computed using the NN routing pro-
cedure, as presented in Algorithm 2. In the first echelon there are usually 
few satellites and depots for routing, so the problem is typically solved 
using exact methods. Nevertheless, in the review of 2E-VRP presented by 
Sluijk et al. (2023), they highlight that algorithms such as NN, C&W 
savings, cheapest insertion, and random insertion have also been used. 
Given that NN was used in the second echelon, it was also chosen as the 
solution method in this subproblem. 

4. Experimental setting and case study results 

4.1. Test with benchmark instances from the literature 

In the first part of this section, the performance of our solution 
approach is tested in some deterministic benchmark instances from the 
literature. For this purpose, we used Set 2 of the datasets available from 
the ORLibrary (https://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/), 
which was proposed by Perboli et al. (2011). Set 2 includes different 
instances, all with 1 depot, 2 or 4 satellites, and 21, 32, or 50 customers. 
These instances are heuristically solved by Perboli et al. (2011). A 
comparison was made between our previous approach (Ramirez-Villa-
mil et al., 2022) and the one proposed in the current study. Both pro-
cedures were implemented in Python. Experiments were run on a PC 
with an Intel® Core™ i7-10510U processor, 2.3 GHz CPU, and 16 GB 
RAM. 

Numerical results are presented in Table 2. Both heuristic ap-
proaches were tested, and the comparison was made between the best 
lower bound and the final solution from the literature. Results show that 

Fig. 1. Explanation of RLS operator in an example.  
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the average approximation of the NN procedure (Ramirez-Villamil et al., 
2022) is 53.1% compared with the best lower bound obtained by Perboli 
et al. (2011), with a minimum of 21.4% and a maximum difference of 
81.3%. The average versus the final solution is 46%, ranging from 17.8% 
to 81.3%. Computational times range between 0.3 and 0.8 s. Further-
more, the results obtained using the algorithm that combines 2D-k- 
means with NN and the RLS improvement heuristic show that they differ 
on average by 38.1% compared with the best lower bound from the 
literature, with a maximum gap of 77.7% and a minimum of 9.4%. 
Compared with the final solution, it has a gap of 31.3%, with a 
maximum of 70.1% and a minimum difference of 7.3%. The computa-
tional times are acceptable because they fluctuate between 0.1 and 0.3 s. 
Moreover, the difference between the NN procedure versus the 2D-k- 
means with NN and the RLS improvement heuristic is on average −
9.6%, ranging from − 25.3% to 3%. These findings show that the so-
lution method presented in this paper generates more efficient solutions 
than the method proposed in the previous study. In the next subsection, 
experiments are described using a real-world case study in the city of 
Paris. 

As shown by the results, the solution approach presented in this 
article does not beat Perboli et al. (2011) matheuristics. It is to note that 
the study of Perboli et al. (2011) was carried out only on small data sets, 
and its performance on very large real-life sized instances is not 
currently reported in the literature. It is important to note that few pa-
pers have aimed to solve large datasets not only in the 2E-VRP but also in 
the VRP (Haripriya & Ganesan, 2022). The only algorithm tested on such 
large datasets (more than 90.000 nodes) is the one proposed by Ramirez- 
Villamil et al. (2022), so our experiments shows that the proposed K- 
means + NN + RLS algorithm outperforms this last work. In addition, it 
has been reported in the literature that common-sense heuristics (such 
as NN) are very useful and performant to solve complex realistic routing 
problems in large size instances (Du & He, 2012). 

4.2. Case study: The case of Paris, France 

Experiments were performed using real data from a French delivery 
company in the city of Paris, France, to test the behavior of the proposed 
heuristic approach with large-scale instances. Our experiments aim to 
determine 1) if the application of 2D-k-means in the case study is an 

improvement in terms of geographical clustering and 2) if the RLS can 
improve the solution obtained with the NN routing procedure. 

The company under study is a key player in the last-mile supply 
chain and a leading brand in delivery. Each year, this company dis-
tributes more than 63 million parcels. It offers home deliveries and is the 
only private carrier with a postal license. Its services are used by major 
business-to-customer (B2C) clients recognized in e-commerce of fashion, 
equipment, publishing, and other sectors, as well as by business-to- 
business (B2B) clients. The company provided the data of 90,627 de-
liveries in Paris from four depots located in the region of ̂Ile-de-France 
(See Appendix A1). Fig. 2 presents the location of the four depots. In 
addition, Paris is administratively divided into 20 districts and the 
Travel Observatory of the city reports an average travel speed of 14 km/ 
h. Fig. 3 illustrates the distribution system under study as a 2E-VRP. 

The purpose of the 2D-k-means clustering is to minimize the sum of 
distances between each delivery point and the centroid of its cluster 
(satellite). The instance considered in this article contains more than 
90,000 customers and was first proposed by Ramirez-Villamil et al. 
(2022). In that paper, two strategies were proposed. The first clustering 
was defined by the administrative division of the city into 20 districts, 
while the second strategy was based on the clustering of certain districts 
in the city by their geographical proximity. This selection was performed 
to obtain 10 clusters without objectively explaining the rationale. To 
make a comparison between the strategy explained before and this 
study, we decided to set k = 10 clusters. Fig. 4 shows the output of 
applying the proposed 2D-k-means (with k = 10) and how the delivery 
points geographically dispersed in the city are clustered. The centroid of 
each group becomes the satellite of the cluster (black triangles). With 
this clustering, it can be guaranteed that the vehicles associated with the 
satellite (i.e., cluster k) will travel shorter distances, and therefore, 
shorten their travel times since travel times are directly related to the 
distance traveled. Additionally, this clustering methodology strives to 
minimize the sum of the distances between the delivery points and the 
centroid to which they belong, which is the satellite in this case. Thus, 
vehicles associated with the satellite in cluster k may only serve the 
delivery points allocated to it. 

As previously mentioned, the distribution network consists of a set of 
four depots located outside the city of Paris. Hence, 10 incapacitated 
satellites (the centroids of the clusters) are geographically located inside 

Table 2 
Comparison between solution approaches for obtaining the lower bound and final solution using Set 2, solved and proposed by Perboli et al. (2011).  

Instance Nodes Heuristic by 
(Perboli et al., 2011) 

NN decomposition algorithm 
(Ramirez-Villamil et al., 2022) 

K-means + NN + RLS algorithm    

Gap (%)   Gap (%)  
Best LB Final sol. Sol. Versus 

LB 
Versus Final sol. T 

(sec) 
Sol. Versus NN. Versus LB Versus Final 

sol. 
T (sec) 

E-n22-k4-s6-17 21  417.07  417.07 600  43.9  25.2  0.4 548  − 8.7  31.4  31.4  0.1 
E-n22-k4-s8-14 21  384.96  384.96 598  55.3  55.3  0.3 508  − 15.1  32.0  32.0  0.1 
E-n22-k4-s9-19 21  470.6  470.6 782  66.2  66.2  0.4 658  − 15.9  39.8  39.8  0.1 
E-n22-k4-s10-14 21  371.5  371.5 548  47.5  47.5  0.3 534  − 2.6  43.7  43.7  0.1 
E-n22-k4-s11-12 21  427.22  427.22 742  73.7  73.7  0.3 622  − 16.2  45.6  45.6  0.1 
E-n22-k4-s12-16 21  392.78  392.78 712  81.3  81.3  0.3 532  − 25.3  35.4  35.4  0.2 
E-n33-k4-s1-9 32  730.16  730.16 1004  37.5  37.5  0.8 862  − 14.1  18.1  18.1  0.2 
E-n33-k4-s2-13 32  709.76  714.64 994  40.0  39.1  0.5 822  − 17.3  15.8  15.0  0.2 
E-n33-k4-s3-17 32  698.81  707.49 1076  54.0  52.1  0.5 808  − 24.9  15.6  14.2  0.2 
E-n33-k4-s4-5 32  757.39  787.29 1181  55.9  50.0  0.8 1076  − 8.9  42.1  36.7  0.2 
E-n33-k4-s7-25 32  745.71  760.36 1018  36.5  33.9  0.7 816  − 19.8  9.4  7.3  0.2 
E-n33-k4-s14-22 32  764.49  780.6 980  28.2  25.5  0.6 916  − 6.5  19.8  17.3  0.2 
E-n51-k5-s2-4–17-46 50  512.18  609.56 910  77.7  49.3  0.7 826  − 9.2  61.3  35.5  0.3 
E-n51-k5-s2-17 50  579.74  597.74 704  21.4  17.8  0.7 688  − 2.3  18.7  15.1  0.3 
E-n51-k5-s4-46 50  515.24  561.8 834  61.9  48.5  0.7 832  − 0.2  61.5  48.1  0.3 
E-n51-k5-s6-12 50  528.84  560.22 720  36.1  28.5  0.6 734  1.9  38.8  31.0  0.3 
E-n51-k5-s6-12–32-37 50  507.49  571.8 842  65.9  47.3  0.6 768  − 8.8  51.3  34.3  0.3 
E-n51-k5-s11-19 50  559.59  588.01 810  44.7  37.8  0.8 734  − 9.4  31.2  24.8  0.3 
E-n51-k5-s11-19–27-47 50  507.64  724.09 876  72.6  21.0  0.8 902  3.0  77.7  24.6  0.3 
E-n51-k5-s27-47 50  526.34  538.2 744  41.4  38.2  0.8 738  − 0.8  40.2  37.1  0.3 
E-n51-k5-s32-37 50  542.83  552.49 950  73.4  71.9  0.8 940  − 1.1  71.6  70.1  0.3 
Average 554.8  583.3  655.6 53.1  46.0  0.6  755.4 − 9.6  38.1  31.3  0.2  
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the city of Paris. From these satellites, a delivery vehicle can perform the 
last-mile distribution to successfully serve the customers (second eche-
lon). In this study, there is a homogeneous fleet between echelons, so in 
the first and second echelons, the fleet is composed of delivery vans with 
800 kg of payload. The fleet was considered in this way because the 
company owns vehicles with this capacity to perform delivery activities 
in both the first and second echelons. Furthermore, for comparative 
purposes, the type of vehicle is consistent with the previous study. 

Performance indicators, such as the number of vehicles, CO2e 
emissions, fine particle emissions, fixed cost, energy consumption, and 
land use, were compared for the different solution approaches to 
determine how efficient and sustainable the results for the last-mile 
delivery can be. CO2e is a universal measurement used to indicate the 
equivalent of the GHG with respect to its global warming potential (EPA, 
2019). Land use is used primarily to ensure that the distribution network 
does not invade public space in large proportions. In addition, fixed costs 
allow decision-makers to analyze whether the costs associated with 
operating the scenario are sufficiently low and decide which scenario 
suits their needs. Regarding energy consumption, it is necessary to 
quantify the cost (euros, in this case) of the energy (diesel or electricity) 

that each transportation mode requires to perform delivery activities. 
Regarding the first echelon, Table 3 shows the results obtained for 

the routing, starting at the depots, to serve all satellites located around 
the city. The black triangles in Fig. 4 are the satellites of the distribution 
network. It is important to note that we compare the results obtained in 
this study with those obtained previously (Ramirez-Villamil et al., 
2022). Notably, the solution obtained by k-means + NN requires 12 
additional vehicles for depot 4 to satisfy the demand of the satellites 
clustered to that depot. As more vehicles are needed, the total distance 
and average travel time per vehicle are also increased. In addition, 
satellites grouped to depot 2 require that the vehicles travel longer 
distances, even if the fleet requires one less vehicle. Although the dis-
tances for depots 2 and 4 have increased, an improvement of 0.2% in 
terms of the distance traveled can be obtained when the routing of the 
first echelon is conducted with the satellites obtained by the 2D-k-means 
clustering. This improvement was calculated using Equation (1). The 
number of vehicles, total distance, and travel time change between 
scenarios because of the new clustering strategy adopted. However, the 
demand remains the same, and the total number of clients to be served in 
the second echelon does not change. 

Fig. 2. Four depots and locations of satellites around Paris.  
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Fig. 3. Two-echelon distribution network under study.  

Fig. 4. Results of the 2D k-means clustering for last-mile delivery.  

A. Ramírez-Villamil et al.                                                                                                                                                                                                                     



Computers & Industrial Engineering 184 (2023) 109604

9

Improvement =

⃒
⃒
⃒
⃒
⃒

∑k
k=1(currentSolk − prevSolk)

∑k
k=1prevSolk

⃒
⃒
⃒
⃒
⃒
× 100 (1) 

In terms of the second-echelon results (see Table 4), a comparison is 
made between the proposed approach and the results obtained by 
applying the RLS as an improvement heuristic. This procedure is only 
applied in the second echelon because this echelon contains the large- 
scale instance (more than 90,000 delivery points). In this tier, delivery 
points are clustered in 10 groups (k = 10), which is the number of sat-
ellites. This clustering was performed to reduce the distance between the 
delivery points and the satellite (centroid of the cluster). The column 

called “% of improvement” refers to the improvement in the distance 
traveled for all vehicles of each cluster. On average, an improvement of 
22.5% in the distance is obtained when the RLS is applied to enhance the 
initial solution. 

Moreover, Table 5 shows a comparison of the performance indicators 
among the following approaches: (i) Strategy 2 from the previous study 
(Ramirez-Villamil et al., 2022), which organized the 20 districts of Paris 
into 10 groups based on proximity and computing size criteria and 
applied a decomposition algorithm based on the NN heuristic; (ii) the 
solution approach presented in this study that combines the 2D-k-means 
clustering and the NN routing procedure; (iii) the RLS proposed as an 
improvement heuristic for the proposed solution approach. These three 
approaches are comparable because all of them involved a clustering 
method for the same number of customers with the same demand in 10 
groups. It is important to note that the comparison was made only in the 
second echelon, where the results reported in Table 5 are the sum of the 
results obtained for the 10 clusters in each solution method. Equations 
(2) and (3) are used to compute the CO2e and fine particle emissions, 
respectively. Concerning the appropriate emission factor for the fine 
particle emissions, the fleet vehicles are Euro-6 (European emission 
standards) compatible. 

CO2e =
∑k

k=1
distancek*fCO2e (2)  

Fine particles =
∑k

k=1
distance k*ffp (3) 

The method previously proposed by Ramirez-Villamil et al. (2022) 
provided results that eventually improved the company’s operations in 
some scenarios; however, there were more opportunities to improve 
parcel distribution within different areas of the city and enhance the 
routes through the implementation of improvement heuristics. The 
present study attempts to improve these results by applying additional 
non-supervised machine learning and optimization techniques. As a 
result, the gap in terms of the total distance, between the clustering 
strategy presented in Ramírez-Villamil et al. (2022) and our approach is 
15.2%, the RLS is improved by 10.9% compared with the previous 
strategy, and the initial solution obtained in this study is improved by 
22.6% using RLS. 

This reduction in the distance traveled indicates that non-supervised 
machine learning methods, like 2D-k-means to make a TD, combined 
with a local search heuristic, such as the RLS, to improve the routing 
obtained using NN, and thereby, achieve more efficient last-mile de-
livery. This is also supported by improvements in terms of travel time, 
land use, fixed costs, CO2e, fine particle emissions, and energy con-
sumption. Thus, our solution method for an urban parcel delivery 
network can be more sustainable for last-mile delivery, allowing 
decision-makers to determine the most suitable delivery operations. 

5. Conclusions and perspectives 

This paper addresses the 2E-VRP with TD and satellite location 

Table 3 
First echelon results, comparison between our previous approach versus k- 
means + NN.  

Depot 
number 

Indicators Ramirez-Villamil et al. 
(2022) 

k-means +
NN 

1 Number of vehicles 24 16 
Total distance 1473.4 940.5 
Avg. distance per 
vehicle 

61.4 58.8 

Avg. travel time 4.4 4.2 
2 Number of vehicles 21 20 

Total distance 1419.6 1629.8 
Avg. distance per 
vehicle 

67.6 81.5 

Avg. travel time 4.8 5.8 
3 Number of vehicles 37 33 

Total distance 3578.1 2923.2 
Avg. distance per 
vehicle 

96.7 88.6 

Avg. travel time 6.9 6.3 
4 Number of vehicles 19 31 

Total distance 448.9 1414.5 
Avg. distance per 
vehicle 

23.6 45.6 

Avg. travel time 1.7 3.3  

Table 4 
Second echelon results, comparison between the initial solution (k-means + NN) 
versus RLS.  

Cluster 
number 

Indicator k-means + NN RLS % of 
improvement 

1 Number of vehicles 12 12 22.4% 
Distance 421.1 326.9 
Travel time 28.1 21.8 

2 Number of vehicles 9 9 21.4% 
Distance 367.1 288.7 
Travel time 24.5 19.2 

3 Number of vehicles 12 12 21.5% 
Distance 513.6 403.2 
Travel time 34.2 26.9 

4 Number of vehicles 10 10 24.3% 
Distance 443.8 336.1 
Travel time 29.6 22.4 

5 Number of vehicles 7 7 21.5% 
Distance 357.8 280.9 
Travel time 23.9 18.7 

6 Number of vehicles 9 9 23.7% 
Distance 381.9 291.6 
Travel time 25.5 19.4 

7 Number of vehicles 12 12 26.4% 
Distance 470.6 346.5 
Travel time 31.4 23.1 

8 Number of vehicles 11 11 22.9% 
Distance 419.6 323.3 
Travel time 28.0 21.6 

9 Number of vehicles 9 9 20.5% 
Distance 408.5 324.9 
Travel time 27.2 21.7 

10 Number of vehicles 10 10 20.9% 
Distance 428.2 338.8 
Travel time 28.5 22.6  

Table 5 
Comparison of performance indicators between the three solutions.   

Ramirez-Villamil et al. 
(2022) 

k-means +
NN 

RLS 

Total vehicles 105 101 101 
Total distance (km) 3657.7 4212.2 3260.9 
Total travel time (h) 261.3 300.9 232.9 
CO2e emissions (kg) 1016.8 1171.0 906.6 
Fine particles (g/km) 36.6 42.1 32.6 
Fixed cost (€) 4828.2 5560.1 4304.5 
Land use (m2) 960.8 924.2 924.2 
Energy consumption (€) 570.3 656.8 508.5 
Avg. travel time per vehicle 

(h) 
2.5 2.9 2.3  
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decisions. Under the scope of this research, there are no studies that 
previously considered two-echelon routing problems with these fea-
tures. We present a non-supervised machine learning clustering method 
for the districting design of many geographically dispersed customers in 
the city of Paris, France, in which the satellites of the distribution 
network are the centroid of the cluster. This work aims to minimize the 
distance between the satellites and delivery points. TD strategies are 
used to determine the most efficient way to serve and respond quickly to 
customer demands and reduce distances and travel times within a 
territory. 

In this study, the delivery routes for the first and second echelons 
were designed to optimize the total delivery time in the city. A three- 
stage decomposition algorithm was proposed to generate initial solu-
tions for the 2E-VRP. In the second subproblem, a local search operator 
was applied to improve the initial solution. We compared the results 
obtained from a previous study (Ramirez-Villamil et al., 2022) with the 
initial solution of this study and the improvement heuristic RLS. The 
initial solution of this paper provides an improvement of 15.2% 
compared with our previous study (Ramirez-Villamil et al., 2022). RLS 
shows an additional improvement of 10.8% compared with the previous 
approach. On average, an improvement of 22.6% in both the distance 
traveled and the travel time is observed when the RLS is applied to 
improve the initial solution in this paper. This indicates that the appli-
cation of non-supervised machine learning methods, like 2D-k-means, 
combined with a local search strategy, such as the RLS, can improve the 
routing obtained using NN and improve last-mile delivery in large cities 
with many data points by reducing the distance traveled and travel time. 
This is supported by additional improvements in terms of land use, fixed 
costs, CO2e, and fine particle emissions. 

Due to the different disruptions that can occur in a supply chain such 
as the one described in this study, it is necessary that the supply chain 
can be able to adapt and overcome in an agile and innovative way to 
efficiently respond to disruptions. Clustering customers for urban dis-
tribution in large cities using data science and machine learning tech-
niques enables better route planning and improved algorithm execution 
by reducing computational times, which allows agile solutions to large 
quantities of nodes. In addition, serving customers from the satellite 
distribution centers located inside each cluster not only allows that if an 
adverse event occurs in any area of the city, other clusters remain in 
operation without affecting the entire system, but also the distances that 
vehicles must travel between satellites and clustered customers are 
shorter, allowing savings in energy consumption and costs, a lower 
CO2e and fine particle emissions, and finally a reduction in the number 

of vehicles, which generates less public space invasion and traffic 
congestion. Thus, achieving a supply chain that is sustainable in social, 
economic, and environmental terms. 

Several avenues of future work stem from this research. First, it is 
necessary to apply metaheuristic algorithms that allow us to avoid the 
local optima and find more general solutions. Second, service times and 
other parameters can be considered. In practice, the service time is 
stochastic because the driver does not spend the same time at every 
delivery point, so the consideration of this parameter may impact the 
global performance of the distribution system. Moreover, new attributes 
can be added to the problem, including multimodal transportation, 
mobile satellites, or heterogeneous fleets in the same echelon (e.g., 
electric vehicles and cargo bikes with different capacities). Finally, the 
analysis of new performance indicators to assess the dimensions of 
sustainability in the proposed distribution networks may complement 
the findings of this study. 
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Appendix A1. Overview of the case study data: Sample of the delivery points  

Delivery point District Demand Coord_X Coord_Y Delivery point District Demand Coord_X Coord_Y 

1 75,001 8610 48.8564734 2.3418286 51 75,001 150 48.8632406 2.3487635 
2 75,001 190 48.8562387 2.3420848 52 75,001 100 48.8621959 2.3490076 
3 75,001 170 48.8558578 2.3425260 53 75,001 220 48.8627578 2.3465614 
4 75,001 150 48.8591918 2.3449735 54 75,001 1280 48.8627592 2.3465507 
5 75,001 690 48.8588096 2.3461027 55 75,001 945 48.8615160 2.3487139 
6 75,001 130 48.8581605 2.3462248 56 75,001 280 48.8622348 2.3484148 
7 75,001 650 48.8595499 2.3470978 57 75,001 140 48.8618875 2.3492959 
8 75,001 230 48.8607556 2.3463187 58 75,001 470 48.8603720 2.3484282 
9 75,001 1760 48.8597766 2.3465990 59 75,001 580 48.8632701 2.3353659 
10 75,001 580 48.8608669 2.3438953 60 75,001 420 48.8611324 2.3447227 
11 75,001 240 48.8614382 2.3421425 61 75,001 930 48.8611324 2.3447227 
12 75,001 260 48.8607475 2.3412265 62 75,001 361 48.8632701 2.3353659 
13 75,001 200 48.8650471 2.3359868 63 75,001 361 48.8632701 2.3353659 
14 75,001 410 48.8674209 2.3264395 64 75,001 2500 48.8593233 2.3472226 
15 75,001 125 48.8667583 2.3281038 65 75,001 180 48.8597471 2.3467840 
16 75,001 3580 48.8654239 2.3297882 66 75,001 2257 48.8589840 2.3438537 
17 75,001 190 48.8647038 2.3302656 67 75,001 340 48.8593595 2.3445162 
18 75,001 80 48.8657163 2.3310274 68 75,001 530 48.8617802 2.3413579 
19 75,001 1160 48.8660744 2.3316523 69 75,001 50 48.8618137 2.3412305 

(continued on next page) 
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(continued ) 

Delivery point District Demand Coord_X Coord_Y Delivery point District Demand Coord_X Coord_Y 

20 75,001 230 48.8660610 2.3313399 70 75,001 390 48.8627551 2.3418635 
21 75,001 3248 48.8670936 2.3323376 71 75,001 605 48.8641834 2.3438658 
22 75,001 2610 48.8652764 2.3318039 72 75,001 80 48.8650565 2.3417039 
23 75,001 300 48.8657002 2.3319501 73 75,001 2260 48.8657002 2.3367834 
24 75,001 1145 48.8650310 2.3315813 74 75,001 1200 48.8656506 2.3344351 
25 75,001 2972 48.8650310 2.3315813 75 75,001 55 48.8642116 2.3351204 
26 75,001 230 48.8650632 2.3317476 76 75,001 816 48.8660784 2.3343332 
27 75,001 350 48.8685648 2.3254015 77 75,001 2300 48.8659202 2.3360485 
28 75,001 615 48.8682362 2.3256603 78 75,001 835 48.8662018 2.3356663 
29 75,001 1090 48.8671915 2.3269397 79 75,001 490 48.8671888 2.3347932 
30 75,001 190 48.8650028 2.3331302 80 75,001 1950 48.8667986 2.3311307 
31 75,001 60 48.8641539 2.3333582 81 75,001 1555 48.8674839 2.3318441 
32 75,001 770 48.8632701 2.3353659 82 75,001 4325 48.8669863 2.3322773 
33 75,001 330 48.8663480 2.3352478 83 75,001 3990 48.8668844 2.3328178 
34 75,001 6080 48.8661911 2.3384571 84 75,001 430 48.8659376 2.3310193 
35 75,001 350 48.8660878 2.3375130 85 75,001 80 48.8674463 2.3284243 
36 75,001 220 48.8663520 2.3375089 86 75,001 100 48.8674463 2.3284243 
37 75,001 170 48.8629845 2.3419091 87 75,001 1140 48.8659671 2.3297346 
38 75,001 1020 48.8638964 2.3400356 88 75,001 1430 48.8632701 2.3353659 
39 75,001 545 48.8643363 2.3402730 89 75,001 410 48.8646743 2.3327185 
40 75,001 3300 48.8639796 2.3421036 90 75,001 1295 48.8644449 2.3329975 
41 75,001 50 48.8641901 2.3415095 91 75,001 220 48.8634029 2.3333569 
42 75,001 1030 48.8646206 2.3456937 92 75,001 100 48.8639796 2.3421036 
43 75,001 160 48.8638696 2.3422350 93 75,001 2868 48.8640560 2.3312742 
44 75,001 260 48.8643014 2.3440924 94 75,001 771 48.8646998 2.3304105 
45 75,001 230 48.8638937 2.3448689 95 75,001 220 48.8646461 2.3294704 
46 75,001 450 48.8634016 2.3462744 96 75,001 190 48.8650042 2.3294878 
47 75,001 1680 48.8637114 2.3481426 97 75,001 100 48.8657002 2.3284230 
48 75,001 520 48.8637114 2.3481426 98 75,001 475 48.8649572 2.3285168 
49 75,001 500 48.8649572 2.3285168 99 75,001 270 48.8697115 2.3271570 
50 75,001 835 48.8650189 2.3283277 100 75,001 2940 48.8698429 2.3278289 
Delivery point District Demand Coord_X Coord_Y Delivery point District Demand Coord_X Coord_Y 
101 75,001 130 48.8658035 2.3259084 153 75,001 3250 48.8695854 2.3262209 
102 75,001 150 48.8686346 2.3255154 154 75,001 1000 48.8690785 2.3290130 
103 75,001 1060 48.8695854 2.3262209 155 75,001 1340 48.8694459 2.3279469 
104 75,001 730 48.8673699 2.3261096 156 75,001 550 48.8667583 2.3343627 
105 75,001 4900 48.8663681 2.3263067 157 75,001 120 48.8678406 2.3264475 
106 75,001 325 48.8664298 2.3264220 158 75,001 110 48.8673042 2.3265132 
107 75,001 100 48.8626586 2.3406887 159 75,001 250 48.8660502 2.3278905 
108 75,001 1460 48.8626586 2.3406887 160 75,001 140 48.8660502 2.3278905 
109 75,001 420 48.8593219 2.3406605 161 75,001 60 48.8672130 2.3301543 
110 75,001 620 48.8637449 2.3454215 162 75,001 170 48.8674638 2.3304038 
111 75,001 189 48.8599509 2.3471770 163 75,001 370 48.8676032 2.3304521 
112 75,001 220 48.8602017 2.3477563 164 75,001 2400 48.8679895 2.3296943 
113 75,001 270 48.8595700 2.3471300 165 75,001 1575 48.8840398 2.2825599 
114 75,001 140 48.8598020 2.3471367 166 75,001 330 48.8681062 2.3292759 
115 75,001 1857 48.8597766 2.3465990 167 75,001 1410 48.8659671 2.3297346 
116 75,001 250 48.8592629 2.3471193 168 75,001 110 48.8654695 2.3299706 
117 75,001 300 48.8624507 2.3361692 169 75,001 440 48.8653059 2.3310515 
118 75,001 520 48.8589115 2.3458815 170 75,001 500 48.8652308 2.3311937 
119 75,001 1100 48.8589625 2.3457500 171 75,001 640 48.8660248 2.3312218 
120 75,001 240 48.8588995 2.3439369 172 75,001 170 48.8667986 2.3311307 
121 75,001 70 48.8589142 2.3448367 173 75,001 260 48.8680002 2.3312728 
122 75,001 1000 48.8585816 2.3438698 174 75,001 170 48.8664231 2.3324785 
123 75,001 160 48.8589840 2.3438537 175 75,001 650 48.8656439 2.3324959 
124 75,001 260 48.8585240 2.3428144 176 75,001 550 48.8641834 2.3315531 
125 75,001 490 48.8585240 2.3428144 177 75,001 390 48.8639702 2.3339590 
126 75,001 110 48.8595164 2.3449869 178 75,001 9990 48.8654816 2.3334602 
127 75,001 90 48.8605450 2.3459364 179 75,001 60 48.8653502 2.3337673 
128 75,001 380 48.8605450 2.3459364 180 75,001 190 48.8654816 2.3334602 
129 75,001 2050 48.8611324 2.3447227 181 75,001 270 48.8654816 2.3334602 
130 75,001 130 48.8613510 2.3449789 182 75,001 1440 48.8646233 2.3328325 
131 75,001 850 48.8604417 2.3406941 183 75,001 120 48.8646233 2.3328325 
132 75,001 700 48.8609487 2.3418877 184 75,001 835 48.8641553 2.3323484 
133 75,001 900 48.8609487 2.3418877 185 75,001 250 48.8634123 2.3349273 
134 75,001 680 48.8610667 2.3414437 186 75,001 615 48.8648969 2.3346671 
135 75,001 390 48.8616528 2.3416181 187 75,001 100 48.8650900 2.3345894 
136 75,001 290 48.8591798 2.3429391 188 75,001 960 48.8655715 2.3345371 
137 75,001 340 48.8606898 2.3436566 189 75,001 110 48.8669220 2.3339899 
138 75,001 90 48.8606898 2.3436566 190 75,001 2830 48.8656506 2.3344351 
139 75,001 370 48.8603264 2.3434621 191 75,001 620 48.8670118 2.3355335 
140 75,001 540 48.8616353 2.3432797 192 75,001 70 48.8664378 2.3360606 
141 75,001 1160 48.8610131 2.3407209 193 75,001 220 48.8667302 2.3369484 
142 75,001 650 48.8610131 2.3407209 194 75,001 870 48.8661951 2.3382305 
143 75,001 890 48.8627686 2.3349836 195 75,001 1200 48.8672720 2.3344284 
144 75,001 280 48.8624507 2.3361692 196 75,001 220 48.8660409 2.3369591 

(continued on next page) 
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(continued ) 

Delivery point District Demand Coord_X Coord_Y Delivery point District Demand Coord_X Coord_Y 

145 75,001 140 48.8667691 2.3243849 197 75,001 550 48.8660650 2.3371173 
146 75,001 370 48.8667905 2.3238015 198 75,001 2280 48.8652456 2.3360686 
147 75,001 670 48.8671459 2.3239759 199 75,001 100 48.8646930 2.3363891 
148 75,001 320 48.8685648 2.3254015 200 75,001 350 48.8650994 2.3386931 
149 75,001 140 48.8686346 2.3255154 201 75,001 1640 48.8632742 2.3381607 
150 75,001 9760 48.8683677 2.3256120 202 75,001 440 48.8632742 2.3381607 
151 75,001 340 48.8697557 2.3273809 203 75,001 300 48.8623287 2.3385885 
152 75,001 3000 48.8697557 2.3273809 204 75,001 1000 48.8618097 2.3393007  
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Karaoğlu, M., & Kara, G. (2022). Two-Stage Heuristic Algorithm Proposal for Urban E- 
Commerce Deliveries. Asia-Pacific Journal of Operational Research, 39(03). https:// 
doi.org/10.1142/S0217595921500342 

Kull, T. J., Boyer, K., & Calantone, R. (2007). Last-mile supply chain efficiency: An 
analysis of learning curves in online ordering. International Journal of Operations & 
Production Management, 27(4), 409–434. 

Lei, H., Laporte, G., & Guo, B. (2012). Districting for routing with stochastic customers. 
EURO Journal of Transportation and Logistics, 1(1–2), 67–85. 

Lei, H., Laporte, G., Liu, Y., & Zhang, T. (2015). Dynamic design of sales territories. 
Computers & Operations Research, 56, 84–92. 

Lei, H., Wang, R., & Laporte, G. (2016). Solving a multi-objective dynamic stochastic 
districting and routing problem with a co-evolutionary algorithm. Computers & 
Operations Research, 67, 12–24. 

Lespay, H., & Suchan, K. (2022). Territory Design for the Multi-Period Vehicle Routing 
Problem with Time Windows. Computers & Operations Research, 145, Article 105866. 

Li, H., Yuan, J., Lv, T., & Chang, X. (2016). The two-echelon time-constrained vehicle 
routing problem in linehaul-delivery systems considering carbon dioxide emissions. 
Transportation Research Part D: Transport and Environment, 49, 231–245. https://doi. 
org/10.1016/j.trd.2016.10.002 

de Lima, S. J., & A., de Araújo, S. A., & Schimit, P. H. T.. (2018). A hybrid approach based 
on genetic algorithm and nearest neighbor heuristic for solving the capacitated 
vehicle routing problem. Acta Scientiarum - Technology, 40. https://doi.org/10.4025/ 
actascitechnol.v40i1.36708 

Liu, D., Kaisar, E. I., Yang, Y., & Yan, P. (2022). Physical Internet-enabled E-grocery 
delivery Network: A load-dependent two-echelon vehicle routing problem with 
mixed vehicles. International Journal of Production Economics, 254, Article 108632. 
https://doi.org/10.1016/j.ijpe.2022.108632 

Luo, J., & Chen, M.-R. (2014). Multi-phase modified shuffled frog leaping algorithm with 
extremal optimization for the MDVRP and the MDVRPTW. Computers & Industrial 
Engineering, 72, 84–97. 

Lopez, F. (2012). HMIP model for a territory design problem with capacity and 
contiguity constraints. In J. R. Montoya-Torres, A. A. Juan, L. Huaccho Huatuco, 
J. Faulin, & G. L. Rodriguez-Verjan (Eds.), Hybrid Algorithms for Service, Computing 
and Manufacturing Systems: Routing and Scheduling Solutions, Chapter 11 (pp. 
226–257). IGI Global.  

Marinelli, M., Colovic, A., & Dell’Orco, M. (2018). A novel Dynamic programming 
approach for Two-Echelon Capacitated Vehicle Routing Problem in City Logistics 
with Environmental considerations. Transportation Research Procedia, 30, 147–156. 
https://doi.org/10.1016/j.trpro.2018.09.017 

Meza-Peralta, K., Gonzalez-Feliu, J., Montoya-Torres, J. R., & Khodadad-Saryazdi, A. 
(2020). A unified typology of urban logistics spaces as interfaces for freight 
transport: A Systematic Literature Review. Supply Chain Forum, 21(4), 274–289. 

Moreno, S., Pereira, J., & Yushimito, W. (2020). A hybrid k-means and integer 
programming method for commercial territory design: A case study in meat 
distribution. Annals of Operations Research, 286, 87–117. 
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