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Purpose: Adaptive optics scanning light ophthalmoscope (AOSLO) imaging offers a
microscopic view of the living retina, holding promise for diagnosing and researching
eye diseases like retinitis pigmentosa and Stargardt’s disease. The technology’s clinical
impact of AOSLO hinges on early detection through automated analysis tools.

Methods: We introduce Cone Density Estimation (CoDE) and CoDE for Diagnosis
(CoDED). CoDE is a deep density estimation model for cone counting that estimates a
density functionwhose integral is equal to the number of cones. CoDED is an integration
of CoDE with deep image classifiers for diagnosis. We use two AOSLO image datasets to
train and evaluate the performance of conedensity estimation and classificationmodels
for retinitis pigmentosa and Stargardt’s disease.

Results: Bland-Altman plots show that CoDE outperforms state-of-the-art models for
cone density estimation. CoDED reported an F1 score of 0.770 ± 0.04 for disease classi-
fication, outperforming traditional convolutional networks.

Conclusions:CoDE showspromise in classifying the retinitis pigmentosa andStargardt’s
disease cases from a single AOSLO image. Our preliminary results suggest the potential
role of analyzing patterns in the retinal cellular mosaic to aid in the diagnosis of genetic
eye diseases.

Translational Relevance: Our study explores the potential of deep density estimation
models to aid in the analysis of AOSLO images. Although the initial results are encourag-
ing, more research is needed to fully realize the potential of such methods in the treat-
ment and study of genetic retinal pathologies.

Introduction

Motivation
The world of ophthalmology has been transformed

by our ability to image the back of the eye. Inspection
of the ocular fundus allows specialists to detect signs of
degenerative diseases that may even extend beyond the

visual system, such as retinopathy caused by diabetes
mellitus. In general, the density and regularity of the
pattern of photoreceptor cells in the retina is affected
in diverse ways by different diseases.1 However, even
with the best clinical cameras, the loss of hundreds
of thousands of retinal cells cannot be quantified
by the time the macroscopic changes of disease are
detected.2
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Eye Fundus Image
Split Detector
AOSLO image

Figure 1. From a standard 45 degrees FOV fundus photograph at left, it is possible to image small regions of it (middle image). From this,
we then crop small areas in which we can quantify cone density (right).

A recent technology is now available to visual-
ize individual cells in the living eye. The split-
detector adaptive optics scanning light ophthalmo-
scope (AOSLO)3 is a noninvasive retinal imaging
technique that corrects for optical distortions, allow-
ing high-resolution images of the photoreceptor layer
to be obtained in living patients4 (see Fig. 1). AOSLO
has made it possible to view (and measure) retinal
tissue in microscopic detail in a way that was previ-
ously only possible in postmortem patients. This has
allowed the quantitative study of changes at the cellu-
lar level caused by various diseases.5 Indeed, it has
been used to describe the degeneration of photore-
ceptor structure in the retina by various quantitative
measurements in several inherited retinal diseases, such
as Stargardt’s disease and retinitis pigmentosa).4,6,7
Retinitis pigmentosa is a group of eye diseases of
genetic origin. It affects the photoreceptor cells of the
retina (first the rods, and then the cones8), causing
first the loss of peripheral and night vision, which in
fact is the first associated symptom.2,9 However, the
diagnosis of retinitis pigmentosa is difficult because
there is no specific test and the actual diagnosis is
made after various examinations, such as optical coher-
ence tomography (OCT), angiography, electroretinog-
raphy, and genetic testing. Therefore, by the time
an accurate diagnosis is made, patients are at an
advanced stage of the disease.9 Stargardt’s is also a
genetic disease that affects vision in the macula and
can lead to complete loss of central vision.10 It does
not cause complete loss of vision because patients
retain peripheral vision. Stargardt’s disease is gener-
ally diagnosed between the ages of 10 and 20 years,
but, like retinitis pigmentosa, the diagnosis process is
not straightforward and involves a number of different
tests.11

Unfortunately, there is no cure for retinitis pigmen-
tosa or Stargardt’s disease.9,12 However, several genetic,
cellular, and drug therapies are being investigated with
promising results. The success of these studies depends
on the progress of the clinical development pipeline,
especially the early and rapid detection and diagnosis
of positive cases.9

In this sense, AOSLO imaging is emerging as
a promising diagnostic tool.13 However, the manual
analysis (which is the gold standard for this task) that
allows the identification and labeling of photoreceptors
in the images is a time-consuming procedure,7 and this
prevents the implementation of these types of images
in diagnostic and research processes.6 Therefore, the
development of automatic methods to support special-
ists and speed up the analysis of AOSLO images is
of significant importance. Therefore, in this paper, we
propose and developmodels based on deep learning to:

• Estimate cone density in split detector AOSLO
images, allowing quantitative analysis at the cellu-
lar level.
• Aid in the diagnosis of retinitis pigmentosa and
Stargardt’s disease by analysis of split detector
AOSLO images.

To achieve these goals, we present the Cone Density
Estimation (CoDE) model and the Cone Density
Estimation for Diagnosis (CoDED) model. CoDE is
a deep density estimation model that learns to gener-
ate cone density maps from the original split detec-
tor AOSLO images. CoDED is an extension of CoDE
to support the diagnosis of specific diseases. Using
thesemethods and the proposed experimental setup, we
show that:
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1. High-precision cone density estimation can be
achieved without the need for patch-based analy-
sis and complex post-processing steps, as is
currently standard in the state of the art.

2. Computer-aided diagnosis of genetic retinal
pathologies such as retinitis pigmentosa and
Stargardt’s disease is possible using split detector
AOSLO image analysis.

RelatedWork

Traditionally, disease diagnosis from AOSLO
images has relied primarily on statistical characteriza-
tions. For example, the effects of Stargardt’s disease
have been assessed using cone spacing and statistical
analysis,14 and similar methods are used for retinitis
pigmentosa.2 Although machine learning efforts have
been made to identify individual cones in conditions
such as choroideremia7 and Stargardt’s disease,4 these
efforts have been separated from the diagnosis of the
diseases. Specifically, several research studies have
shown positive results in distinguishing patients with
Stargardt’s disease from healthy individuals using OCT
images.15 These studies used deep learning models
trained on small datasets (with less than 1000 samples,
as less than 100000 samples are considered small to
train deep learning models16). However, it is important
to note that to the best of our knowledge, no previous
research has reported the diagnosis of Stargardt’s
disease and retinitis pigmentosa from AOSLO images
using machine learning techniques. This distinction
highlights the novelty of our research.

On the other hand, machine learning techniques
have been used to investigate the task of estimating
cone density. In their work, Cunefare et al.17 presented
a model for cone counting that involves the analysis
of 32 × 32 pixel patches extracted from the original
AOSLO image. This implies that a time-consuming
preprocessing step is required to partition eachAOSLO
image and create a set of patches, which are then
labeled based on whether a cone is present or not.
The training process is performed at the patch level
to obtain a model that can detect the presence of
cones. The inference process analyzes the entire image
through 32 × 32 pixel patches centered on each pixel
of the original image, creating a global heat map that
indicates the probability of cone presence at the pixel
level. This heat map requires processing to obtain an
accurate estimate of the location and number of cones
in the image. Although the results are encouraging,
the model’s pre- and post-processing requirements for
both training and final cone count estimation make
its implementation a cumbersome process, difficult to
run in end-to-end architectures, and therefore difficult

to update as new images become available. However,
the dataset they use is available for public use17 and
is used as a baseline reference for evaluating our
models.

Davidson et al.4 proposed amultidimensional recur-
rent neural network to segment the cones. This
approach requires the segmentation masks of the
images for training. The model combines convolu-
tional layers with multidimensional long-short term
memory blocks to capture near and far dependencies
between pixels and incorporate this information into
the segmentation task. Again, the implementation of
such a model requires additional work to generate the
segmentation masks, which, as in the case of Cunefare
et al.,17 is a major drawback in terms of practicality.

Beyond cone counting in AOSLO images, the
general task of counting objects in images is recurrent
in the state of the art.18,19 It is not only at the micro-
scopic level that it is necessary to count objects. It can
also be necessary to count animals or people, andmany
methods have been developed in the last decades to
perform this task automatically.20 A recurrent idea is
to use filters on the images to represent map densi-
ties.18 In this sense, an interesting approach that does
not require so much preprocessing and mask genera-
tion for the cell counting task is presented by Xie et
al.21 They proposed a method for counting objects in
images based on density map estimation. Knowing the
location (coordinates) of the objects to be counted, a
density map can be generated whose integral is equal
to the number of elements. Then, the model (a U-
Net based architecture22) is trained to generate the
corresponding density map from the original image.
This technique is used to count bacteria in images of
microscopic samples and is shown to be robust and
easy to implement, as it requires no pre-processing
such as patch extraction and no post-processing of the
results.

With this background, we propose a method that
builds on the idea presented byXie et al.21 but improves
and adapts the backbone of the segmentation model
and adds a linear correction at the top to fine-tune the
estimation of the number of cones in the image. Unlike
Davidson et al.4 and Cunefare et al.,17 we do not need
any additional annotations beyond the location of the
cones, nor patch extraction, or segmentation masks to
train our method. Our method is end-to-end trainable
and can be used as a basis for other architectures.

The paper is organized as follows: in section 2,
we present the framework and experimental setup for
CoDE and the subsequent diagnostic model: CoDED.
In section 3, we present the experimental results, and
finally in section 4, we present the discussion and
conclusions of this work.
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Methods

We perform cone counting based on the estima-
tion of a density map created from the annotations
on each AOSLO image. These annotations are manual
markings of the centroid of the cone photoreceptor.
Each cone was assigned to a point and placed as
close to the center of the cell as the human grader
could locate. The grader was a person with consider-
able experience in marking cell locations.17 The labels
were therefore a collection of pixel coordinates corre-
sponding to the centroid of the cell. The density map
image produced by the model can later be used as input
to a deep convolutional neural network (CNN) model
to perform a diagnostic task. The details of each proce-
dure are described below.

CoDE: Cone Density Estimation

The complete architecture of the proposed CoDE
model used for the cone density estimation task is
shown in Figure 2. Inspired by the method presented
byXie et al.,21 themodel is trained to generate a density
map from the original AOSLO image, using a U-Net23
architecture with anXception24 backbone. The integral
of this density map is a first approximation to the
number of cones in the image, which is then fitted by
a linear model.

Density Map Estimation
An Xception-based U-Net model25 is used as the

backbone for the density map phase. The Xception
model, short for Extreme Inception, is a CNN devel-
oped by François Chollet.24 The key innovation in
Xception is the use of depthwise separable convolu-
tions, which are more computationally efficient than
standard convolutions. The architecture consists of an
Entry Flow, a Middle Flow, and an Exit Flow, each
consisting of layers of depthwise separable convolu-
tions, as well as skip connections for improved gradi-
ent flow. The model has been successfully applied to
various image classification tasks, object detection,
and other computer vision applications, often exceed-
ing or matching the efficiency of architectures, such
as VGG,26 ResNet,27 and Inception,28 while requiring
fewer computational resources.24

The final output of the model would be a single
channel image with an integral equal to the total
number of cones. The model is then trained as a regres-
sor using a mean squared error (MSE) loss function
given by:

MSE = 1
m

m∑

i=1

(yi − ŷi)2, (1)

wherem is the number of pixels in the image and yi, and
yˆi correspond to the actual and predicted pixel values,
respectively. Although we acknowledge that MSE can
be sensitive to outliers, this choice was motivated by
MSE’s well-established utility in regression problems29
and by the fact that the regression is performed at
the pixel level, that is, in a range between 0 and 1. In
addition, MSE offers the advantage of smooth gradi-
ents, which facilitates the optimization process.29 All
implementation details are also available in the GitHub
repository.30

Linear Correction
The U-Net stage of the CoDE model can infer

the cone density map and an actual number from the
cone count. The density map shows the approximate
location of each cone, and the cone count is the result
of the sum (of the pixel values) over the density map.
Because we are performing a pixel-by-pixel regres-
sion, there is no need for normalization to perform
this final sum. However, although this may be suffi-
cient for the task, we observed systematic deviations
in the final cone count, especially at the extreme ends
of the prediction interval. To fine-tune these extreme
predictions andmake themmore consistent with actual
observations, we used a linear regression model y =
ax + b. Here, y is the true outcome, x is the U-Net
predicted value, a is the slope, and b is the intercept.
This model was trained to minimize deviations specifi-
cally at the extremes. The effectiveness of the correction
was confirmed by cross-validation, resulting in signifi-
cant improvements in agreement at the interval bound-
aries. Thus, this linear fit optimizes the performance of
CoDE without adding computational complexity.

CoDED: CoDE Diagnosis

The overall architecture of the proposed CoDED
is described in Figure 3. We approach Stargardt’s
disease and retinitis pigmentosa diagnosis as a three-
class classification problem, as we also have a control
(healthy) group. For this, we fine-tune a deep convo-
lutional neural network. Instead of using raw AOSLO
images as input, we use the density maps estimated
by CoDE as the basis for classification. In essence,
CoDED performs a diagnosis based on these density
maps. The fine tuning of the deep CNN follows a
standard procedure31: we use the convolutional block
as a feature extractor, on top of which we build a two
hidden layer perceptron and an output layer. Given the
categorical nature of the classification, the output layer
consists of three neurons, one for each class, paired
with a softmax activation function. This results in a
three-element output vector whose elements sum to
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CoDE

Cone Density Estimation

Xception-based
U-Net

Input:
AOSLO image

256 x 256

Predicted
Density Map
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Batch
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+
Convolutional

Layer

10483
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Output:
Cone Density
Estimation

128 x 128

64 x 64

32 x 32
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Figure 2. CoDEmodel architecture for cone density estimation on split detector AOSLO images. The original image is input into amodified
Xception-based U-Net21,25 to generate a density map of the cones in the original image. The integral over this density map is linearly
corrected to provide an accurate estimation of the number of cones in the image.

one. Whereas the class assignment is determined by the
element with the highest value in this output vector, we
refrain from interpreting these as probabilities, as it has
been shown that softmax activation does not necessar-
ily offer a probabilistic interpretation.32 Most impor-
tantly, given our data labels, the final trained model
would only be useful for classifying between retinitis
pigmentosa, Stargardt’s disease, and healthy patients.
If the model is fed an image that does not match retini-

tis pigmentosa or Stargardt’s disease, one would expect
a random guess in the form of an even distribution over
the output vector.

Experimental Setup

The training process of the models follows the
standard design of machine learning experiments.31
Details of the datasets, the models’ architecture, and
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CoDE

Input:
AOSLO image

256 x 256

Predicted
Density Map Feature Extaction Classification

Deep CNN

Global Avg
Pooling

Convolution Dense Layers

CoDED

Figure 3. CoDED model architecture for disease diagnosis in AOSLO images. The density map predicted by CoDE is the input to a deep
CNN model. The convolutional block of the CNN works as a feature extractor and the final classification is performed by a three-layer fully
connected perceptron.

the hyperparameter settings for training and evaluation
metrics are presented below.

The study adhered to the tenets of the Declara-
tion of Helsinki, received approval from a National
Research Ethics Service (NRES) ethics committee, and
was performed with written informed consent from all
participants.

Datasets
In this paper, we use two different image datasets.

The first, hereafter referred to as Cunefare, is a publicly
available baseline dataset presented by Cunefare et al.17
and uploaded to a GitHub repository.33 The second
dataset, hereafter referred to as Dubis, will be made
available to all reasonable requests.

The Cunefare dataset consists of 264 split detector
AOSLO samples annotated with the coordinates of the
center of the cones. According toCunefare et al.,17 they
used image sets from 14 subjects with normal vision
obtained from the Advanced Ocular Imaging Program
image bank,34 as well as data from 2 subjects each
with congenital achromatopsia and oculocutaneous
albinism. These images were acquired using a split
detector AOSLO with a 1.0 degrees field of view. Axial
length measurements secured with an IOL Master
were calibrated to retinal distance (μm) using a known
Ronchi rule and an adjusted axial length method. In
addition, they included a new dataset of 152 split detec-
tor images from 4 subjects with normal vision, with
regions of interests (ROIs) averaging 216 × 216 pixels
and ranging from 93× 93 μm2 to 111× 111 μm2. From
each subject’s dataset, eight images were extracted
along a single randomly selected meridian at multiple
eccentricities (500–2800 μm). ROI’s containing approx-

imately 100 photoreceptors were isolated from these
images,35 and their intensity values were normalized to
a range of 0 to 255. An expert grader manually identi-
fied cone photoreceptors in all images.17 This dataset is
partitioned by the authors17 into 184 images for train-
ing and 80 for testing, and in order to directly compare
the models’ performance, we use the same partitions in
our experimental setup for the cone density estimation
task.

The second dataset, hereafter referred to as Dubis,
also consists of 264 split detector AOSLO images.
Image acquisition parameters were similar to those
used in the Cunefare dataset, maintaining consistency
in terms of split detector AOSLO settings, field of
view, and axial length measurements, among other
criteria. Additionally, we have disease labeling for this
dataset: 60 samples correspond to control cases, 65 to
patients with Stargardt’s disease, and 139 to patients
with retinitis pigmentosa. For each image, we also have
the location in pixel coordinates of the center of each
cone present in the image. This annotationwasmade by
an expert in the field. To be consistent with the baseline
setup,17 we took 184 samples for training and valida-
tion and 80 for testing.

The size of the images in both datasets is scaled
to 256 × 256 pixels. For the cone density estimation
task, we also performed a normalization of all images.
All details of the datasets are summarized in Tables 1
and 2.

Ground-Truth Density Maps
To construct the density maps that serve as the

ground-truth, each AOSLO image is processed to
generate a corresponding map utilizing the known
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Table 1. Cunefare Dataset Partition for Training and
Test17

Partition No. of Samples

Training 184
Test 80

This dataset is available in a GitHub repository33 and has
264 split detector AOSLO images and is used in this work for
the cone density estimation task.

Table 2. Dubis Dataset Partition for Training and Test

Diagnosis Train Test

Normal 42 18
Stargardt disease 44 21
Retinitis pigmentosa 98 41
Total 184 80

This dataset has 264 split detector AOSLO images, labeled
for 3 classes: normal, Stargardt disease, and retinitis pigmen-
tosa. This dataset was used in this work for the cone density
estimation and for the disease diagnosis task.

coordinates of all cones, as depicted in Figure 4. A
Gaussian filter is applied to every point identified as a
cone center, with a σ value set to 1. The selection of σ

value for Gaussian filtering is not subject to the model’s
hyperparameter tuning process. As shown in Figure 5,
this choice is based on practical considerations related
to the resolution of representation and the precise
distinction of cells in high-density areas, avoiding any
potential risk of missing cells due to overlaps or exces-
sively sharp Gaussian peaks.

Choosing a lower σ value would lead to narrower
Gaussian peaks, necessitating increased precision to
avoid missing accurate representations. Conversely,
selecting a σ value closer to 2 could result in overly

broad peaks in the density maps. In instances of high
cellular density, such broad peaks could risk merging,
potentially causing the model to miss individual cells
and thus impairing its discriminative capabilities. The
σ = 1 is a balanced choice that preserves individual cell
representation in high-density images without impos-
ing undue representational precision and avoiding the
risk of missing cells. Although other σ values close to 1
could be explored, our empirical observations validated
the efficacy of a σ value of 1.

CoDE: Model Architecture and Training
Asmentioned earlier, Xception acts as the backbone

for the U-Net section of CoDE, which consists of
four blocks. The entry block consists of a 2D convo-
lution layer with 32 filters, a batch normalization,36
and a rectifier activation function.37 The following
blocks each consist of 2D separable convolution layers,
followed by batch normalization and max-pooling.38
At the lowest point of the U-Net, the feature map
has a size of 16 × 16 × 256. Four upsampling
blocks consisting of transposed convolutional layers
and batch normalization are used to recover the corre-
sponding density map. The size of the kernel in all
convolutional layers is 3 × 3. To adapt the model to
generate density maps, we added a batch normaliza-
tion layer and a single-filter convolutional layer at the
top of the model, inspired by the cell-counting U-Net
implementation presented by Xie et al.21 Therefore, the
output of the model would be a single channel image.
This output is intended to be a densitymap of the cones
present in the original AOSLO image.

CoDE is trained from scratch using a MSE
loss function. The optimizer chosen for this task is
RMSProp, awidely used adaptive learning ratemethod
that has shown good performance in various deep

Figure 4. Left: Original split detector AOSLO sample. Right: Ground-truth density map. To train the CoDE model, the ground-truth density
map is generated using the known coordinates of the center of the cones. A Gaussian filter is applied to each point, producing a density
map whose integral matches the number of cones in the original AOSLO image.
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Figure 5. Example of density maps for an AOSLO image with a high concentration of cones (37600 cones/mm2) using different σ values.
Left: The ground-truth label showing the cone locations as distinct points. Middle: Density map using Gaussian filters with σ = 1. Right:
DensitymapusingGaussianfilterswithσ =2.Note in the right image thatdistinct pairs of conesbegin tomerge, causing their corresponding
Gaussian functions to overlap significantly. Such overlap could cause themodel to fail to identify individual cones, making the learning task
more difficult.

learning tasks.39 Its adaptability makes it particularly
suitable for medical imaging problems where the data
may be unbalanced or noisy.

In the training phase, we performed a hyperparam-
eter search to select an appropriate learning rate. The
learning rate was explored on an exponential scale from
10−6 to 10−1. Based on the validation performance, the
learning rate was finally set to 10−3, which resulted in
the most stable and efficient convergence during train-
ing. For the per-pixel classification layer, we conducted
experiments to choose the optimal filter configuration
and kernel size.25 Specifically, we found that setting
the number of filters to three and the kernel size to
five yielded the best tradeoff between complexity and
performance. The final convolutional layer for density
prediction consists of a single filter, linear activation,
and orthogonal initialization, following the methodol-
ogy of Xie et al.21

Data augmentation was used during training to
increase the generalizability of the model. Using
techniques, such as vertical and horizontal flips,
random rotations, and randomwidth and height shifts,
we mitigate the risk of overfitting, a common problem
in medical imaging due to limited data.31 Impor-
tantly, the chosen data augmentation strategy has been
validated in several previous medical imaging applica-
tions, confirming the robustness and applicability of
our chosen setup,40 and is fully described by Krause
et al.41

Several independent training procedures were
performed using the respective training partitions
of each dataset (see Tables 1 and 2) and the joint
dataset, further strengthening the generalizability of
our approach.

Baseline
The model presented by Cunefare et al.17 is our

baseline for cone density estimation. The method,
called adaptive filtering and local detection (AFLD),
is based on a CNN trained on small patches that may
or may not contain a single cone. Therefore, the infer-
ence process involves classifying all possible patches,
one for each pixel, so that each pixel is assigned a score
related to how likely it is to be a cone. This predicts a
heat map for the whole image, which must be processed
to find the final predicted cone locations. The results on
the Cunefare dataset are reproduced using the available
reports,33 but we were unable to train or test the model
on the new Dubis dataset.

CoDED: Model Architecture and Training
Disease diagnosis is approached as a three-class

classification task. For the CoDE stage, we use the
weights learned for the cone density estimation task.
This means that the classification model can take
advantage of the joint Cunefare and Dubis training
partitions, even though the Cunefare dataset has no
disease labels.
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For the deep CNN stage, we used the convolutional
block as a feature extractor, taking the output of the
average pooling layer as input to a subsequent multi-
layer perceptron (MLP). The MLP consists of two
dense layers, followed by a dropout regularization,42
culminating in an output layer. The first dense layer
of the MLP has the same number of neurons as the
average pooling layer of the backbone CNN (1024
or 2048, depending on the model), which allows for
seamless integration and minimizes the risk of infor-
mation loss during this transition. The second dense
layer consists of 1024 neurons. This architecture has
shown promising results in preliminary experiments,
capturing higher order interactions between features
without overfitting. The output layer contains three
neurons corresponding to the three classes that we
want to classify: Stargardt’s disease, retinitis pigmen-
tosa, and controls.

For model training, we first used a transfer learning
approach,31 initializing the convolutional block with
weights pre-trained on the ImageNet dataset.43

This allows us to take advantage of the already
robust feature extraction capabilities of the CNN.
After this initial transfer learning stage, we performed
fine-tuning31 of the entire architecture using our
specific dataset. To clarify, fine-tuning implies that the
pretrained ImageNet weights serve as an initial starting
point, and the model is then further trained to adapt
these weights to the specific task of disease classifica-
tion based on the density maps of the Dubis dataset.
This two-step procedure enriches the model’s ability to
generalize well to the ocular disease classification task.

Four well-known deep CNNs were explored on
top of CoDE for this task: Xception,24 ResNet,27
Inception-V3,28 and MobileNet-V2.44 The reason for
using these models is the good performance they have
previously shown in medical image analysis.40,45 In

each case, training was performed on the training parti-
tion of the Dubis dataset (see Table 2), optimizing a
categorical cross-entropy loss using RMSProp.39 The
learning rate was explored on an exponential scale
from 10−6 to 10−1. The best performance was achieved
with a learning rate of 10−4. The data augmenta-
tion configuration was the same as that used for the
CoDE model to compensate for the small size of the
dataset.

To rigorously evaluate our approach, we perform
two sets of experiments: one using our proposed
CoDED pipeline, and another using the standalone
CNN models (Xception, ResNet, Inception-V3, and
MobileNet-V2) as a baseline. For this baseline, the
CNN architectures are also initialized with weights
pretrained on ImageNet and then fine-tuned using
the original AOSLO images from the Dubis dataset.
This baseline setup allows us to assess whether the
CoDEDmodel, which uses density maps, provides any
additional advantages in classification accuracy over
using the original AOSLO images directly.

Results

We implemented CoDE and CoDED in Python
using TensorFlow46 and Keras.47 Code and results are
publicly available in a GitHub repository.30

Cone Density Estimation

The CoDE method can accurately estimate the
location of the cones using the predicted density map
from the U-Net stage (see Fig. 6). As described in
section 2.1, the integral of this predicted density map
provides a first approximation to the final number of

Figure 6. Left: Original split detector AOSLO image sample (from the Dubis test partition).Middle: Ground-truth density map showing the
location of each cone according to the manual annotation. Right: Predicted density map given by CoDE.
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Figure 7. Bland-Altman plots comparing the performance of cone density estimation on the Cunefare test set. This is only for models
trained with the Cunefare training partition. The figure on the left shows the results for the baseline AFLD.17 The figure on the right shows
the results for the proposed CoDE. Note that although the CoDE measurements have a slightly higher standard deviation compared to the
AFLD, the mean difference of the CoDE is much closer to zero.

cones, which is further refined with a final linear model.
Since each sample AOSLO image consists of a square
of 100 μm on each side, calculating the cone density
after counting is simple and straightforward: just divide
the estimated number by 0.01 to get cones/mm2.

Several experimental procedures were performed
using the training partitions of each dataset (see
Tables 1 and 2) and a common Cunefare and Dubis
training dataset. The performance of the models is
reported as Bland-Altman plots. A Bland-Altman plot
allows to analyze the agreement between two methods
for measuring a quantity. Using the manual measure-
ment of the cones as the ground-truth, the plot gives
information about the difference between the measure-
ment given by the method and the ground-truth,
with respect to the magnitude of these measurements.
Training only with the Cunefare training partition
allows us to directly compare the performance of the
proposed CoDE method with the baseline. The perfor-
mance of the models on the Cunefare test partition
is shown in Figure 7. Compared to AFLD,17 CoDE
has a mean difference closer to zero, indicating a
higher level of concordance compared to the gold
standard.

When the CoDEmodel is trained on the joint train-
ing partitions of the Cunefare and Dubis datasets
and evaluated on the Cunefare test set, it reports a
mean difference in density estimation of -159 cells
per square millimeter and a 95% confidence interval
between -1883.27 and 1564.4 cells per square millime-
ter (see Fig. 8). This is better than any previous result
achieved for this task on the Cunefare dataset. Figure 8
also shows the results of CoDE on the Cunefare test set

when trained with the Cunefare andDubis training sets
separately.

Regarding the evaluation on the Dubis test parti-
tion, Figure 9 shows the results for CoDE using the
different training data configurations. The best model
was also the one trained with the joint datasets, with
a mean difference of -16.42 cells per square millimeter
and a 95% confidence interval between -2799.96 and
2766.24 cells per square millimeter (see Fig. 9).

Stargardt’s Disease and Retinitis Pigmentosa
Diagnosis

The classification results of CoDED using
Xception,24 ResNet,27 Inception-V3,28 and
MobileNet-V244 on the Dubis test partition for
Stargardt’s disease, retinitis pigmentosa, and controls
are presented in Table 3. We performed 20 indepen-
dent trials (training and evaluation) for each model,
maintaining the experimental design, to estimate the
mean and standard deviation of the following perfor-
mance metrics: accuracy, precision, recall, and F1
score. Accuracy provides a general assessment of the
overall effectiveness of the model. Precision is critical
to minimize false positives, whereas recall is critical
to reduce false negatives, especially given the clini-
cal implications of false diagnoses. The F1 score, a
harmonic mean of precision and recall, is particularly
useful given the unbalanced nature of the classes. It
serves as a balanced metric that accounts for both false
positives and false negatives, providing a more compre-
hensive view of the model performance. The procedure
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Figure 8. Bland-Altman plot of the results on the Cunefare test partition for the proposed CoDE method trained with Cunefare (top left),
Dubis (top right), and a joint Cunefare and Dubis training partition set (bottom). In the latter case, the standard deviation is lower, and the
meandifference is closer to zero compared to theAFLD results and to the sameCoDEmodel trainedwith any single trainingpartitiondataset.

we followed is consistent with best practices in machine
learning and computational diagnostics, ensuring the
reliability and validity of our results. The confusion
matrix for the best performing model obtained with
CoDED-Inception-V3 is shown in Figure 10.

We can see from the results in Table 3 that CoDED-
Inception-V3 is the best performing model. In general,
for all the deep CNN models we tried, the average
performance improved when the deep CNN was used
on top of the CoDEmodel. The best overall model was
CoDED-Inception-V3, which achieved a performance
in the Dubis test partition of 84% for accuracy, 84%
for F1 score, 84% for weighted precision, and 84% for
weighted recall (see Fig. 10).

Overall, the most remarkable aspect of these results
is the fact that it is indeed possible to make a classifi-
cation among Stargardt’s disease, retinitis pigmentosa,
and healthy patients from a small sample of the cellu-

lar pattern (such as that given by an AOSLO image).
Deep learning models can learn to distinguish between
different lesion patterns to discriminate between one
disease and another, and the performance of the model
is enhanced when the cellular pattern is easily distin-
guishable, as in the density maps generated by CoDE.

Discussion

In this paper, we presented CoDE, a method for
automatic cone density estimation on split detector
AOSLO images. Whereas machine learning techniques
have previously been applied to the task of cone
density estimation, we have shown that it is possible
to do so with a model that does not require exhaus-
tive patch-based analysis or mask-based segmentation.
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Figure 9. Bland-Altman plot of the results on the Dubis test partition for the proposed CoDEmethod trainedwith Cunefare (top left), Dubis
(top right), and a joint Cunefare and Dubis training partition set (bottom). In the latter case, the standard deviation is lower, and the mean
difference is closer to zero compared to the same CoDE model trained with any single training partition dataset.

Figure 10. Confusion matrix for the best model of CoDED-
Inception-V3 on theDubis test set. Control refers to healthy samples,
STGD to Stargardt disease, and RP to retinitis pigmentosa.

This makes the implementation of the method much
easier, as it does not require any additional prepro-
cessing or the generation of additional annotations
other than the cone coordinates just for the training
process. In addition, our method is able to generate an
estimate of the location of the cones, but, more impor-
tantly, it can automatically count the number of cones
in the image to provide an accurate estimate of the
cone density. Having evaluated the performance of the
model on two different datasets, we conclude that the
method is robust and has a good capacity for general-
ization to the density estimation task on the mentioned
datasets, being directly competitive with the state-of-
the-art models. Moreover, because it does not require
any postprocessing as previous approaches, it allows for
end-to-end training, thus obtaining amodel that can be
easily updated as more samples become available.
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Table 3. Classification Performance on the Dubis Test Partition of the Combined CoDE + DeepCNN Models
Explored for the Diagnosis of Stargardt Disease and Retinitis Pigmentosa

Model Accuracy Precision Recall F1 Score

Xception 0.681 ± 0.04 0.706 ± 0.03 0.681 ± 0.04 0.652 ± 0.06
ResNet 0.510 ± 0.01 0.292 ± 0.04 0.510 ± 0.01 0.3615 ± 0.02
Inception-V3 0.726 ± 0.04 0.762 ± 0.03 0.726 ± 0.04 0.730 ± 0.03
MobileNet-V2 0.706 ± 0.04 0.729 ± 0.04 0.706 ± 0.04 0.708 ± 0.03
CoDED-Xception 0.737 ± 0.03 0.766 ± 0.03 0.737 ± 0.03 0.738 ± 0.03
CoDED-ResNet 0.711 ± 0.04 0.767 ± 0.03 0.711 ± 0.04 0.712 ± 0.04
CoDED-Inception-V3 0.768 ± 0.05 0.794 ± 0.04 0.768 ± 0.05 0.770 ± 0.04
CoDED-MobileNet-V2 0.695 ± 0.04 0.754 ± 0.04 0.695 ± 0.04 0.702 ± 0.04

We report the mean and standard deviation over 20 trials.

Based on CoDE, we also presented CoDED, a deep
CNN-based approach for automatic classification of
cases of Stargardt’s disease and retinitis pigmentosa
from split detector AOSLO retinal images. Using trans-
fer learning and fine tuning techniques on different
deep CNNs, and taking advantage of the pretrained
CoDE (which uses a larger dataset than the disease-
labeled dataset intended for this task), we showed that
it is possible to perform classification of Stargardt’s
disease and retinitis pigmentosa with respect to control
patients, all in a single model. Although individual
deep CNN models performed well, we also showed
that this classification performance is improved when
it is done using the density maps inferred by CoDED.
This means that the CoDED model takes advantage
of the explicit cone pattern that is more distinguish-
able in the density maps than in the original AOSLO
images.

Beyond the fact that the classification results are
good and that we have shown that CoDED-Inception-
V3 has the best performance, the key point to conclude
is that a small sample of the cellular pattern of the
macular region of the retina is sufficient for these
computational models to be considered a reliable tool
to assist medical staff in the diagnostic process of these
diseases. This can help streamline the usual diagnos-
tic process, which requires numerous tests and the
time and knowledge of specialized ophthalmological
staff, which in turn can lead to greater coverage of
the population at lower cost. Therefore, these results
open the door to further research and development
of methods to improve these diagnostic support tools.
Although the results are encouraging, more extensive
validation is required in a wider range of conditions
before it can be considered a universally reliable tool
for clinical diagnosis. In the long term, the scientific and
societal benefits are potentially great.

Overall, we demonstrate the feasibility of deep
machine learning models to speed up the analysis

of split-detector AOSLO images, thereby encouraging
and facilitating the development and use of this type
of image in the study and treatment of genetic retinal
pathologies.
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