Evaluación de tres procesos para la purificación del dióxido de carbono emitido en los sistemas de endulzamiento de las plantas de tratamiento de gas natural

Nancy Esperanza Gámez Valero

Ingeniera Química

Facultad de Ingeniería Maestría en Diseño y Gestión de Procesos Procesos Químicos

2016

Evaluación de tres procesos para la purificación del dióxido de carbono emitido en los sistemas de endulzamiento de las plantas de tratamiento de gas natural

Nancy Esperanza Gámez Valero

Ingeniera Química

Tesis de maestría presentada como requisito parcial para optar por el título de Magister en Diseño y Gestión de Procesos, énfasis en Procesos Químicos

Directora

Martha Isabel Cobo, PhD

Profesora, Facultad de Ingeniería, Universidad de La Sabana

Facultad de Ingeniería

Maestría en Diseño y Gestión de Procesos

Procesos Químicos

2016

1

Agradecimientos

A mi directora de tesis, la Dr. Marta Isabel Cobo Ángel, por sus aportes en el desarrollo de este proyecto, los cuales me permitieron lograr los objetivos de la investigación. De la misma manera, al Dr. Iván Mantilla (Bryan Research & Engineering), quien con sus aportes desde su experiencia profesional y su conocimiento, me ayudaron a orientar el proceso de investigación de manera precisa.

En segundo lugar a mi hijo y esposo, quienes son las alegrías más grandes de mi vida y han creído en mí desde siempre.

A mis padres y hermanas, quienes me han brindado un apoyo constante en el desarrollo de este proyecto.

Resumen

Las emisiones de dióxido de carbono (CO₂) a la atmósfera son una de las causas principales del calentamiento global, debido al crecimiento de la industria y la constante explotación de combustibles fósiles. Específicamente en la extracción de gas natural, el CO₂ se remueve del gas extraído por absorción química con aminas, conocida como endulzamiento del gas. Posteriormente, la solución rica en gas ácido pasa por un proceso de regeneración del solvente donde se efectúa la desorción del CO₂, que es emitido a la atmósfera.

En este proyecto se compararon tres tecnologías para purificar el CO₂ remanente del proceso de regeneración del solvente, con el fin de determinar posibilidades de comercialización y uso que eviten su emisión a la atmósfera. Como estudio de caso, se tomó una planta de tratamiento de gas con una capacidad de tratamiento de 10 millones de pies cúbicos estándar por día (MMSCFD), con un volumen de gas a tratar de 6.5 MMSCFD, equivalentes a 3454 $\frac{ton}{ano}$ de CO₂ que se liberan a la atmósfera en la regeneración del solvente. De acuerdo a los análisis de laboratorio realizados a esta corriente de CO₂, se encontró que viaja acompañada de 6,4 % mol de agua, 1,27 % mol de hidrocarburos y 275 ppm H₂S. Esta corriente se alimentó a la simulación en ProMax de tres procesos de absorción química con amina, deshidratación combinado con tamiz molecular y el sistema criogénico Ryan Holmes para producir CO₂ líquido. El mayor rendimiento se encontró cuando se combinaron la absorción química con metildietanolamina (MDEA) y la deshidratación con trietilenglicol (TEG) combinado con

un tamiz molécula), obteniendo 99,7% de recuperación de CO_2 y un costo de USD 286,322.40, el cual es 5% menor al del sistema criogénico Ryan Holmes. Este proceso podría permitir la purificación del CO_2 emitido a la atmósfera desde el sistema de endulzamiento de gas natural, para su posterior comercialización; como alternativa de reducción de emisiones de gases de efecto invernadero (GEI).

4

Abstrac

Carbon dioxide (CO_2) emissions into the atmosphere are a major cause of global warming due to the industrial growth and the continued exploitation of the fossil fuels. Specifically in the natural gas extraction, CO_2 is removed from the gas extracted by chemical absorption with amines, known as gas sweetening. Subsequently, the solution rich in acid gas passes through a regeneration process where the desorption of CO_2 from solvent is performed, and CO_2 is released into the atmosphere.

In this project, three technologies to purify the CO₂ released from the regeneration process were compared, in order to identify opportunities for marketing and use to prevent its release into the environment. As a study case, a gas plant treatment was taken with a treatment capacity of 10 million standard cubic feet per day (MMSCFD), the flow of gas to be treated in normal operation of the plant is 6.5 MMSCFD, which is equivalent to 3454 tons/year CO₂ released into the environment. The CO₂ stream was characterized in the laboratory, and it was found that this stream has 6.4 mol% water, 1.27 mol% oil and 275 ppm H₂S. This stream was the input into the simulation in ProMax for the three CO₂ purification processes design, looking forward to recovering at least 99% of this gas. Chemical absortion with methyldiethanolamine (MDEA) triethylene glycol (TEG) dehydration combined with molecular sieve and Ryan Holmes cryogenic system to produce liquid CO₂ were simulated. The highest yield was found when chemical absorption with MDEA and dehydration with TEG combined with a molecular sieve were combined, obtaining 99.7% CO₂ recovery and a cost of USD 286.322,40, which is 5% lower than the Ryan Holmes cryogenic system. This process could allow the purification of the CO_2 emitted into the environment from the natural gas sweetening for subsequent marketing; as an alternative to reducing greenhouse gases (GHGs) emissions.

Tabla de Contenido

Indice de Tablas
Indice de Figuras
CAPITULO 1: Introducción General14
1.1 Introducción15
1.2 Objetivos
1.3 Estructura de la tesis
1.4 Aportes relacionados con este trabajo
CAPITULO 2: Revisión Literaria
2.1.1 Sistema de endulzamiento de gas con amina25
2.1.2 Sistema de deshidratación con glicol
2.1.3 Sistema criogénico Ryan Holmes
2.1.4 Adsorción física en sólidos
2.2 Uso de CO ₂ en la industria
2.3 Evaluación económica
CAPITULO 3. Simulación de procesos por cada tecnología
3.1 Caracterización de la corriente de gas ácido
3.2 Sistema de endulzamiento de gas con amina
3.3 Sistema de deshidratación con glicol
3.4 Proceso criogénico Ryan Holmes
3.4.1 Reinyección de gas ácido en pozos
3.5 Recuperación de CO ₂ de las tecnologías simuladas

3.6 Metodologia de calculo de costos por tecnologia
CAPITULO 4. Resultados de estudio por cada tecnología61
4.1 Caracterización de la corriente de gas acido
4.2 Sistema de endulzamiento de gas con amina
4.3 Sistema de deshidratación con glicol
4.4 Proceso criogénico Ryan Holmes
4.5 Recuperación de CO ₂ y costo por tecnología
5. Conclusiones
6.Referencias
ANEXO A. Especificación de calidad de CO2 y costos
ANEXO B. Criterios de selección de paquete termodinámico de acuerdo a ProMax 3.2
ANEXO C. Simulaciones de las diferentes tecnologias en ProMax 3.2
ANEXO D. Resultados de las corrientes de proceso de las diferentes tecnologías93
ANEXO E. Resultados de los equipos principales de las diferentes tecnologías 108
ANEXO F. Cálculos asociados a las torres de absorción y destilación115

Índice de tablas

Tabla 1 Especificaciones RUT 23
Tabla 2. Especificaciones de costo y calidad para los usos más comunes del CO2 34
Tabla 3. Datos de la bomba centrifuga
Tabla 4. Especificaciones de Intercambiador
Tabla 5. Especificaciones de torre contactora 53
Tabla 6. Datos de la bomba reciprocante
Tabla 7. Especificaciones de Intercambiador de placas
Tabla 8. Especificaciones de Intercambiador 2. 55
Tabla 9. Especificaciones de la torre contactora
Tabla 10. Especificaciones de la torre regeneradora
Tabla 11. Especificaciones del Aero enfriador
Tabla 12. Especificaciones del tamiz molecular
Tabla 13 Especificaciones del rehervidor. 57
Tabla 14. Especificaciones de Intercambiador. 58
Tabla 15. Especificaciones de la columna
Tabla 16. Especificaciones del rehervidor 58
Tabla 17. Especificaciones del Aero enfriador
Tabla 18. Resultados de la caracterización de la corriente de CO2 evaluada. Datos en
% mol
Tabla 19. Condiciones operativas evaluadas en el sistema de endulzamiento

Tabla 20. Condiciones operativas evaluadas en el sistema de deshidratación
Tabla 21. Condiciones operativas evaluadas en el sistema Ryan Holmes 70
Tabla 22. Comparación entre las diferentes tecnologías
Tabla 23. Resultados de la simulación del sistema de endulzamiento con amina
secundario74
Tabla 24. Paquetes de propiedades aplicables para procesos comunes. 85
Tabla 25. Resultados de la simulación del sistema de endulzamiento con amina94
Tabla 26. Resultados de la simulación del sistema de deshidratación con TEG95
Tabla 27. Resultados de la simulación del sistema de deshidratación con TEG96
Tabla 28. Resultados de la simulación del sistema de deshidratación con TEG97
Tabla 29. Resultados de la simulación del sistema de deshidratación con TEG 98
Tabla 30. Resultados de la simulación del sistema Ryan Holmes
Tabla 31. Resultados de la simulación del sistema Ryan Holmes
Tabla 32. Resultados de la simulación del sistema de Reinyección
Tabla 33. Resultados de la simulación del sistema de Reinyección
Tabla 34. Resultados de la simulación del sistema de Reinyección
Tabla 35. Resultados de la simulación del sistema de Reinyección
Tabla 36. Resultados de la simulación del sistema de Reinyección
Tabla 37. Resultados de la simulación del sistema de Reinyección
Tabla 38. Resultados de la simulación del sistema de Reinyección
Tabla 39. Resultados de intercambiador de calor. 109
Tabla 40. Resultados de torre contactora 110

Tabla 41. Resultados de bomba centrifuga 110
Tabla 42. Resultados bomba reciprocante
Tabla 43. Resultados de la torre contactora
Tabla 44. Resultados torre absorbedora 112
Tabla 45. Resultados torre de fraccionamiento 113
Tabla 46. Resultados intercambiador de calor
Tabla 47. Especificaciones de la corriente de entrada a la torre de absorción
Tabla 48. Datos curva de equilibrio 117
Tabla 49. Datos para la curva operativa 119

Índice de Figuras

Figura 1. Diagrama de flujo de procesos del Sistema de endulzamiento con amina. 16
Figura 2. Diagrama de flujo de procesos de planta de tratamiento de gas24
Figura 3. Sistema de deshidratación con glicol
Figura 4. Proceso diseñado en ProMax para la absorción de H ₂ S41
Figura 5. Proceso diseñado en ProMax para la deshidratación del gas acido
Figura 6. Proceso diseñado en ProMax para el sistema Ryan Holmes
Figura 7. Proceso diseñado en ProMax para la reinyección de CO ₂
Figura 8. Materiales de construcción, para intercambiadores de tubo y carcasa 50
Figura 9. Longitud de la tubería
Figura 10. Recuperación de CO ₂ en función de la presión del gas de entrada
Figura 11. Efecto de la temperatura del disolvente en la eliminación del H ₂ S66
Figura 12. Temperatura del rehervidor en función de la composición de TEG 68
Figura 13. Recuperación de CO ₂ en función de la temperatura del condensador (lado
izquierdo del eje y) y la presión de entrada (lado derecho del eje y)71
Figura 14. Costos del CO ₂ a nivel industrial
Figura 15. Calidad del CO ₂ 80
Figura 16. Selección de paquetes termodinámicos
Figura 17. Sistema de amina principal
Figura 18. Sistema de amina secundario
Figura 19. Sistema de deshidratación con trientilenglicol

Figura 20. Ryan Holmes	91
Figura 21. Sistema de reinyección de Gas	
Figura 22. Curva de equilibrio	118
Figura 23. Calculo de los platos teóricos	120
Figura 24. Calculo de platos teóricos torre de regeneración.	120
Figura 25. Calculo de platos teóricos torre de destilación.	121

Capítulo 1: Introducción General

1.1 Introducción

La demanda mundial de energía aumenta gradualmente a un ritmo de 10-15% cada 10 años. Este aumento significará un incremento en las emisiones de CO_2 de aproximadamente 50% en 2030 en comparación con el nivel actual (Aboudheir et al, 2009). Los países industriales (América del Norte, Europa Occidental y la OCDE del Pacífico) contribuyen en un 70% en comparación con el resto del mundo y aproximadamente más del 60% de estas emisiones provienen de la generación de energía y los sectores industriales (Aboudheir et al, 2009). Estas emisiones de CO_2 provienen principalmente de tres grandes fuentes: generación de electricidad y calor 41%, transporte 23%, e industrias de manufactura y construcción, 21%. Frente a un escenario en el que se prevé que el consumo de petróleo, carbón y gas, principales fuentes de energía, se incremente en los próximos 30 años, desencadenará un incremento en la concentración de los gases de efecto invernadero como dióxido de carbono (CO_2), metano, óxido nitroso y ozono (Sokos et al, 2010).

En Colombia, la implementación de plantas de tratamiento de gas natural ha aumentado en los últimos años, y las emisiones de CO₂ a la atmósfera dependerán de la capacidad de cada planta, la concentración de compuestos ácidos, humedad y contenido de hidrocarburos en el gas a tratar. A pesar de estas emisiones, el proceso de tratamiento de gas en la industria del petróleo es considerado uno de los procesos más limpios para la obtención de gas natural. De acuerdo con la Reglamento Único de Transporte (RUT) (Herrera, 1999), en Colombia es necesario retirar el CO₂ y el H₂S contenidos en el gas ácido, para la obtención de un gas natural dulce con bajas concentraciones de compuestos ácidos ($CO_2 < 2\%$ en moles y H₂S <4 ppm) (Herrera, 1999). El proceso de absorción con amina es uno de los más utilizados en las plantas de tratamiento de gas para la eliminación de los compuestos ácidos (H₂S y CO₂) en una torre contactora (Ahmed et al, 2009), como se describe en la Figura 1.

Figura 1. Diagrama de flujo de procesos del sistema de endulzamiento con amina (Minkkinen et al, 2004)

La absorción de CO_2 utilizando aminas se considera como el mejor proceso por sus exitosas implicaciones comerciales, flexibilidad por la baja presión parcial del CO_2 en las corrientes de gas y la alta pureza del producto de CO_2 (Sabilr et al, 2011). El proceso de endulzamiento de gas es llamado así debido a la absorción de CO_2 del gas a tratar. Se dice que el gas con un contenido de CO_2 superior a 2% mol, es un gas agrio y este es endulzado cuando se le retira el CO₂. Sin embargo, en el proceso de regeneración de la solución de amina usada en la absorción, el CO₂ y el H₂S son retirados y emitidos a la atmósfera. Debido a que es necesario reducir las emisiones de CO₂ a la atmósfera, en este proyecto se evaluaron tres procesos que permitieran purificar el CO₂ emitido a la atmósfera por el sistema endulzamiento de gas natural, para ofrecer alternativas de uso que reduzcan las emisiones de GEI (Zhang et al, 2013).

1.2 Objetivos

1.2.1 Objetivo general

Evaluar tres procesos de purificación del dióxido de carbono emitido en los sistemas de endulzamiento de las plantas de tratamiento de gas natural; que permita proponer opciones técnica y económicamente viables que eviten la emisión de este gas a la atmósfera.

Comentado [m1]: los objetivos siempre tienen que ir en verbo!

1.2.2 Objetivos específicos

- Seleccionar tres alternativas de purificación de dióxido de carbono disponibles comercialmente y simular su implementación en la purificación del dióxido de carbono emitido en una planta de tratamiento de gas natural existente.
- Elegir la tecnología de purificación de dióxido de carbono más apropiada con base en su viabilidad económica y operativa.

1.3 Estructura de la tesis

Esta tesis se ha dividido en 4 capítulos. El capítulo 2 presenta una revisión de la literatura sobre el proceso de tratamiento de gas y los tres procesos de purificación de CO₂ (endulzamiento con amina, deshidratación con trietilenglicol y proceso criogénico Ryan Holmes). Además, se incluyen las variables para cada uno de los procesos y las bases del cálculo del costo de cada tecnología.

El capítulo 3 presenta las simulaciones de proceso de cada tecnología con las hojas de cálculo en los anexos.

El capítulo 4 presenta los resultados del estudio para cada tecnología, incluyendo sus costos.

Por último, se presentan las conclusiones y las referencias.

1.4 Aportes relacionados con este trabajo

Conferencias

- Nancy Gámez, Marta Cobo, Iván Mantilla, Diseño conceptual de un proceso de purificación del dióxido de carbono emitido en los sistemas de endulzamiento de las plantas de tratamiento de gas. Artículo presentado en ProMax Users Conference, Muscate, Omán, Octubre 4-6, 2015.
- Nancy Gámez y Marta Cobo, Diseño conceptual de un proceso de purificación del dióxido de carbono emitido en los sistemas de endulzamiento de las plantas de tratamiento de gas. Póster presentado en el XXVIII Congreso Colombiano de Ingeniería Química, Bogotá, Colombia, Octubre 28-30, 2015.

Capítulo 2: Revisión de literatura

Capítulo 2: Revisión de la literatura

La concentración medida de CO₂ se ha incrementado desde la revolución industrial. La industria es responsable directa o indirectamente del 55-80% de la producción de CO₂, y una fracción apreciable de las emisiones ocurre como resultado de actividades industriales relacionadas con la extracción de combustibles fósiles (Moreno et al, 2013). La extracción de gas natural desde los pozos de los campos petrolíferos genera CO₂ debido a que se deben cumplir las especificaciones RUT para su transporte y comercialización (Tabla 1) (Calderón et al, 2013). El tratamiento del gas para cumplir estos requerimientos consta de 6 etapas, de acuerdo a la Figura 2:

- Separación de líquidos
- Compresión
- Endulzamiento
- Deshidratación
- Control del punto de rocío de hidrocarburo
- Fraccionamiento

Inicialmente, el gas a 30 psi y 80 °F pasa por un proceso de separación (1); en este proceso el gas ingresa a un separador trifásico que efectúa la separación de tres fases (gashidrocarburo-agua). El gas pasa a la etapa de compresión (2), mientras que el hidrocarburo líquido se envía a la etapa de fraccionamiento y el agua se envía a un sumidero de aguas aceitosas. En la etapa de compresión, el gas eleva su presión desde 30 psi a 980 psi para el proceso de endulzamiento. En el proceso de endulzamiento (3), el gas pasa por una torre absorbedora, donde ingresa por el fondo y por la cima entra amina a 1100 psi, una temperatura 20 °F superior a la del gas de entrada y un flujo promedio de 65 gpm. En este proceso de trasferencia de masa, la amina absorbe el CO₂ del gas, generando una reacción exotérmica entre las dos especies. Posteriormente, el gas pasa al proceso de control de punto de rocío de hidrocarburo, donde intervienen otros procesos como la deshidratación del gas (4) (remoción del agua del gas e inhibición de hidratos), la expansión Joule-Thomson (5) (isoentálpica) y la refrigeración mecánica (6) (sistema de refrigeración con propano). De esta etapa de proceso se recobran los líquidos de gas natural que posteriormente se refinarán en la etapa de fraccionamiento. Así se obtiene gas con especificaciones RUT para venta.

Tabla 1. Especificaciones RUT (Registro Único de Transporte) para venta y transportede gas natural (Calderón et al, 2013).

Parámetro	Especificación RUT	Proceso requerido	
Contenido de líquido	Libre de líquidos	Separación del gas	
Concentración de CO ₂	>2 % V/V	Endulzamiento de cas	
Concentración de inertes	>5% V/V	Enduizamiento de gas	
Humedad	>6 LbH2O/MMscfd]	Deshidratación del gas	
Punto de rocío del hidrocarburo	>-20 [°F]	Control del munto de	
Mínimo poder calorífico bruto	950 [Btu/scf]	rocío	
Máximo poder calorífico bruto	1150 [Btu/scf]		

Los líquidos generados en la etapa anterior se envían a una torre de destilación (7) (deetanizadora) donde el alimento se refina, hasta obtener un líquido libre de metano y etano (C1-C2), que se envían con el gas natural. El líquido proveniente de la primera torre de destilación se refina en la segunda torre (8), donde se obtiene el gas licuado de petróleo y los líquidos de gas natural enriquecidos en pentanos (C5, C6, C7 hasta Cn) y compuestos más pesados (Minkkinen et al, 2004).

Figura 2. Diagrama de flujo de procesos de planta de tratamiento de gas natural.

Así, de acuerdo a la Figura 2, el proceso de tratamiento de gas natural genera una corriente de CO_2 que actualmente se emite a la atmósfera; sin embargo la evaluación de la factibilidad técnica y económica de la purificación de esta corriente para su uso posterior en otros procesos, puede ser una fuente de alternativas para contribuir a la reducción de GEI.

2.1 Tecnologías de purificación de CO2

La tecnología de endulzamiento de gas natural emite grandes cantidades de CO_2 que podrían ser utilizadas en otros procesos. A continuación se detallan las tecnologías

estudiadas en este proyecto para purificar este CO₂. Finalmente se exponen posibles aplicaciones del CO₂ purificado.

2.1.1 Sistema de endulzamiento de gas con amina

La absorción química permite eliminar selectivamente por reacciones químicas el componente que es más fácilmente soluble en el absorbente. La remoción de CO_2 usualmente se realiza con etanolamina, amoniaco o una solución alcalina (Sabilr et al, 2011). De acuerdo a lo anterior, la absorción de CO_2 utilizando amina se considera como el mejor proceso por sus exitosas implicaciones comerciales, flexibilidad por la baja presión parcial del CO_2 en las corrientes de gas y la alta pureza del producto de CO_2 (K. Sabilr, 2011). En el caso de estudio de este proyecto, se utilizó metildietanolamina (MDEA) al 50% en peso (Aboudheir Ahmed et al, 2009), puesto que este solvente es selectivo a la remoción de H_2S sobre la de CO_2 y los requerimientos energéticos para su regeneración son bajos (Minkkinen Ari et al, 2004).

La metildietanolamina (MDEA) es una amina terciaria muy utilizada en este proceso. No tiene átomos de hidrógeno unidos a nitrógeno y la reacción con CO₂ únicamente forma aniones de bicarbonato y agua (Ecuación 1) (Addington et al, 2010). La formación del anión bicarbonato se considera una reacción lenta, debido a que limita la reacción de CO₂ con menos valores de equilibrio en tiempos de contacto cortos. Por otro lado, la reacción química de H₂S con MDEA es casi instantánea por una transferencia de protones (Ecuación 2). La MDEA tiene un alto potencial de absorción de H₂S, donde la cinética es más rápida, mientras que la absorción de CO₂ es más lenta, por lo que esta característica

puede ser usada para limpiar el CO₂ al retirarle el H₂S con el que viaja (Daniels et al, 2001).

$$CO_2+H_2O+R_2NCH_3 \iff RNCH_4 + HCO_3- Ec.1$$
$$H_2S+R_2NCH_3 \iff R_2NHCH_4 + HS- Ec.2$$

Teniendo en cuenta que este proceso es ideal para la remoción selectiva de compuestos ácidos (H₂S), de acuerdo con la reacción exotérmica entre el ácido sulfhídrico y la MDEA (Ver.Ec.2), no es posible con este proceso una remoción considerable de agua del gas si este está saturado.

2.1.2 Sistema de deshidratación con glicol

La existencia de agua en la corriente de gas tiene efectos diferentes, que son perjudiciales para el proceso. El primero de estos efectos es la condensación, cuando la temperatura del gas disminuye y el vapor de agua se condensa. Otra razón se deriva del primer efecto antes mencionado, porque el agua se deposita en las tuberías y equipos, donde se podrían presentar reacciones químicas que conducen a la formación de ácidos, causando corrosión (Sánchez et al, 2012).

El proceso de deshidratación de gas con glicol, específicamente trietilenglicol (TEG), es el proceso más usado en la industria de petróleo y gas (Oil & Gas) (Aguilera et al, 2012). Las etapas de proceso del sistema de deshidratación se muestras en la Figura 3 y se describen a continuación:

 Torre absorberdora de glicol: Puede ser una torre de platos o empacada, donde el gas se pone en contacto con glicol en contracorriente. El glicol llega a la torre al 98,7% en peso y sale por el fondo habiendo absorbido el agua que debe retirar de la corriente de gas, por lo cual su pureza baja a 95,3% en peso.

- Válvula de expansión: Esta válvula se usa para controlar la caída de presión y realizar el control de nivel en la torre contactora.
- Separador de glicol e hidrocarburos líquidos: En esta etapa de proceso se separa el gas y el condensado que arrastra el glicol, desde la torre absorbedora.
- Filtros: Se utilizan filtros que retienen partículas de 5 a 10 μm y filtros de carbón activado, de los cuales depende que la solución esté libre de partículas sólidas y de hidrocarburos, para así evitar formación de espuma en la torre contactora.
- Intercambiadores: El glicol rico a temperatura ambiente, se utiliza para enfriar el glicol pobre que viene del horno, usando intercambiadores de calor de tubo y carcasa o de doble tubo.
- Torre regeneradora: Remueve la mayor parte del agua absorbida por el glicol, dejando el producto regenerado con una pureza del 98,5% en peso. Para mejorar la pureza del TEG se agrega una corriente de despojamiento que se burbujea en el glicol, y sale por el tope de la misma (Martínez et al, 2011).

Figura 3. Sistema de deshidratación con glicol (Minkkinen et al, 2004).

Este sistema es ideal para disminuir la concentración de agua en el gas, más no para la remoción de compuestos ácidos del mismo, lo cual limita la purificación de dióxido de carbono.

2.1.3 Sistema criogénico Ryan Holmes

El CO₂ puede ser condensado y separado de gases poco condensables a bajas temperaturas y altas presiones. El proceso total consta de condensación y destilación criogénica (CDC). Los gases de combustión se secan y comprimen a la entrada y el gas seco se refrigera en una columna de condensación con el objeto de recobrar el CO₂ condensado (Moreno et al,

Comentado [N2]: Se incluyo este comentario, puesto que umo de los jurados evidencio que era necesario poner las limitantes de cada proceso. 2013). El método CDC se ha empleado para la eliminación de CO_2 en mezclas de CH_4/CO_2 y otros gases empleados en la recuperación de hidrocarburos de fuentes naturales. Este proceso requiere un consumo elevado de energía cuando la concentración de CO_2 en los gases de entrada es baja (B. Moreno et al, 2013). La diferencia en la concentración de CO_2 y la presión del gas, a su vez implica diferencias significativas en la presión parcial de CO_2 , que van desde muy bajas hasta altas presiones parciales. Estas diferencias entre las presiones parciales y la concentración, indican que las respectivas condiciones de captura requerirán diferentes tecnologías de captura para la operación, la energía y la optimización de costos, además de la concentración y la presión parcial de CO_2 (Sabil et al, 2011).

Algunos estudios revelan que la principal ventaja de la recuperación de CO_2 es su uso como energía criogénica. En este proceso, el método de separación criogénica se basa en procesos industriales, tales como la compresión y fraccionamiento, lo que indica una fácil expansión a escala industrial (Xu et al., 2012). En general, dos factores pueden afectar la presión de CO_2 en una mezcla de gas son: la concentración de CO_2 y la presión total de la mezcla de gas. Bajo una presión de 30 bares y a concentraciones de CO_2 de 40 y 60 % mol, la temperatura debe reducirse hasta aproximadamente a -113,8 y -86,8 °F, respectivamente, para separar el 90% de CO_2 de la mezcla de gas. Por otro lado, cuando la concentración de CO_2 en la mezcla se incrementa a 90 % mol, el CO_2 se puede separar de la mezcla de gas a una temperatura de -52,6 °F (Xu et al., 2012).

El proceso de Ryan Holmes tiene dos configuraciones dependiendo de la concentración del CO_2 en la corriente de entrada: un sistema de tres columnas (de-etanizador – estabilización de CO_2 y recuperación) para concentraciones superiores a 50% y dos

columnas (de-etanizador y recuperación de CO_2) para las concentraciones más bajas (Finn, 2014). Para este proceso, es necesario tener en cuenta el uso de una alta demanda de refrigerante y consumo de energía. Para obtener CO_2 puro de una mezcla de butano o hidrocarburos más pesados, se debe tener en cuenta la volatilidad de cada compuesto, ya que el CO_2 es el compuesto más volátil de todas las composiciones (Finn, 2014).

Este sistema es ideal para recobro de CO_2 de alta pureza, sin embargo es necesario garantizar que no exista contenido de agua en la corriente a tratar, puesto que esto generaría formación de hidratos (taponamiento en las tuberías) y problemas operativos.

2.1.4 Adsorción física en sólidos

El cloruro de calcio (CaCl₂) se puede utilizar como un desecante consumible para deshidratar el CO₂; la capacidad típica del CaCl₂ es 1,36 kg/kg de CaCl₂ y las velocidades de lecho superficiales son 6-9 m/min (Minkkinen et al, 2014). Según Martínez et al. (2011), los silicatos de aluminio están diseñados para retener adsorbatos (componentes adsorbibles) a través de fuerzas físicas. Los tamices moleculares adsorben moléculas basadas no sólo en su tamaño y configuración, sino también en la polaridad y el grado de saturación. Las variables de operación del proceso son:

- Temperatura de contacto: La temperatura de contacto afecta la capacidad de los tamices, es decir la cantidad de absorbato que puedan retener. El rango de temperatura de un desecante sólido está entre 80-100 °F.
- Presión de operación: Esta variable es despreciable para la operación, sin embargo y de acuerdo al diseño, las presiones bajas aumentan el tamaño de los equipos, mientras que las altas presiones aumentan el espesor del recipiente.

- Tiempo de contacto: velocidad del gas entre 30 y 45 ft/min.
- Tamaño de las partículas del tamiz: Se debe tener en cuenta que a medida que se reduce el tamaño de la partícula, se incrementa la superficie de adsorción y por tanto la capacidad, pero también aumenta la caída de presión en el lecho.
- Regeneración: Se desorbe agua del lecho pasando gas caliente en sentido contrario al flujo de gas normal por el tamiz, y así se desorbe el agua del lecho. Es necesario tener en cuenta las tuberías, los calores latentes de vaporización del agua y las pérdidas de calor (Martínez et al, 2011).

2.2 Uso de CO₂

2.2.1 Reinyección de CO₂

El uso de CO_2 para el recobro mejorado de crudo se hace desde hace más de 40 años. Allí, se inyectan grandes cantidades de CO_2 en el yacimiento para formar un flujo miscible (Gutierrez et al, 2003). El CO₂ extrae los componentes livianos a intermedios del aceite y si la presión es suficientemente alta, desarrolla miscibilidad para desplazar el aceite del yacimiento (Nagy et al, 2006). Cuando la presión del CO₂ no es lo suficientemente alta, se debe contar con un sistema de compresión, el cual la debe elevar por encima de la que este en el llacimiento. De la misma manera, el CO₂ se puede almacenar en campos de gas natural agotados (Renganathan et al, 2012).

Para evitar la corrosión galvánica en las tuberías del yacimiento, el CO_2 debe contener una cantidad de humedad cercana a cero; debido a que el CO_2 se disuelve en presencia de agua, formando ácido carbónico, el cual es corrosivo para el acero al carbono. Por otro

lado, si el gas contiene H_2S , puede generarse sulfuro de hierro en presencia de soluciones neutras y ácidas, como producto de la corrosión. Algunas investigaciones han mostrado que bajas concentraciones de H_2S (<30 ppm) en una solución de agua saturada con CO_2 se puede acelerar la velocidad de corrosión (Pineda, 2012).

2.2.2 Otros usos en la industria

Los principales usos del CO₂ en la industria son como líquido refrigerante, agente de soldadura, fumigante, anti-incendios, añadido a las bebidas, para el tratamiento del agua y reinyección en pozos de petróleo. Un uso muy reciente del CO₂ es como fluido supercrítico (SC-CO₂, *supercritical carbon dioxide*), que se ha utilizado durante años para fines de análisis o extracción. Una gran aplicación de esta tecnología es la extracción de la cafeína para la producción de café descafeinado. El uso de SC-CO₂ tiene el efecto secundario de reducir el impacto ambiental de solventes orgánicos y produce productos más puros para la industria alimenticia. De hecho, el CO₂ residual no tiene ningún efecto en los seres humanos, a diferencia de los residuos de disolventes orgánicos.

Mucho más reciente es la aplicación como solvente para procesos industriales y como reactivo. El SC-CO₂ se utiliza ahora como solvente en reacciones de polimerización, para la síntesis de nano-partículas, en la hidrogenación de hidrocarburos insaturados y sus derivados y en la síntesis de ácido fórmico (Ecuación 3) (M. Aresta et al, 1998).

$$H_2 + CO_2 = HCOOH Ec. 3$$

Fijación química del dióxido de carbono

La industria química usa CO₂ desde hace más de un siglo. La síntesis de urea (50 millones de toneladas por año), es un ejemplo de la síntesis de una molécula orgánica (Ecuación 4).

$$CO_2 + 2NH_3 + H_2O = H2 + NCONH_2$$
 Ec. 4

Más recientemente, el CO₂ se ha utilizado como aditivo de CO en la síntesis de metanol. Se utiliza un total de 90 Mt/año de CO₂ para tales fines sintéticos, que fijan 115 Mt/año del CO₂ utilizado para fines industriales (tecnológicos y químicos) (Alarcón et al, 2006).

La tabla 2 muestra los usos más comunes del CO_2 de acuerdo a las especificaciones de precios y calidad de la empresa PRAXAIR (Anexo A). Estos usos requieren purezas superiores al 99,95% de CO_2 , que fueron usadas como especificaciones de diseño en este proyecto.

Categoría	Volumen (ft ³)	Precio en dólares (USD)	Calidad
Uso Médico (Fase Gaseosa)	437	13	$CO_2 = 99,95\%$ $O_2 < 5ppm$ $H_2O < 0.5 ppm$
Propósitos generales-Gas de alta pureza (Fase líquida)		25	$CO_2 = 99,99\%$ $O_2 < 5ppm$ $H_2O < 0,5 ppm$
Uso Industrial (bebidas) (Fase gaseosa)		10,45	CO2 = 99,99% O2 < 5ppm H2O < 0,5ppm

Tabla 2. Especificaciones de costo y calidad para los usos más comunes del CO2

2.3 Evaluación económica de tecnologías

El capital inicial de un proceso contempla el diseño de la planta, adquisición y montaje de los equipos necesarios, construcción civil y puesta en marcha de la misma. El costo de inversión inicial es llamado CAPEX, refiriéndose a las inversiones de capital (Peters et al, 1978). La inversión de capital se estima teniendo en cuenta las bases de diseño de la operación. En el caso de los consumibles por etapa de proceso, se tiene en cuenta la carga inicial para cada sistema (solventes, catalizadores, sustancias químicas, etc.) y conforme al desarrollo del proceso, se determinan los consumos óptimos de la operación en general. El diseño de la planta debe contemplar la recirculación e integración energética, que permitan controlar los gastos de operación. El CAPEX debe incluir el costo derivado de actividades realizadas por contratistas, para efectos de comprobar el funcionamiento de los equipos, la calibración de los controladores, entre otros (Seider et al, 2014).

A continuación se describen los métodos para determinar la inversión de capital:

- Estimación de orden de magnitud: Basado en datos suficientes para determinar el tipo de equipamiento y su arreglo para convertir materias primas en productos.
- Estimación de estudio: Este estudio se basa en un diseño preliminar de proceso.
- Estimación preliminar: Se tienen en cuenta los estudios de diseños de procesos detallados, tendientes a optimizar el diseño.
- Estimación definitiva: Basado en un estudio de diseño definitivo y detallado (Peters et al, 1978).

De la misma manera, se deben estimar los costos de servicios secundarios que requiere la planta para su funcionamiento óptimo, los cuales son los siguientes:

- Servicios Auxiliares: gases, válvulas, entre otros.
- Servicios Generales: Estos costos están referidos a las habitaciones para el personal de la planta, alimentación, oficinas administrativas y laboratorio. Los costos en este aspecto son variables dependiendo de la cantidad de personal requerido para la operación y las necesidades de los mismos (Seider et al, 2014).

En este proyecto se comparó el costo de inversión de tres tecnologías para la purificación de CO₂, como un parámetro de selección del proceso más conveniente para ser aplicado
para purificar el CO2 emitido en una planta de endulzamiento de gas natural, que permita

darle un uso a este gas residual y reducir las emisiones de GEI.

Capítulo 3. Simulación de procesos de cada tecnología

Capítulo 3. Simulación de procesos de cada tecnología

Para llevar a cabo la purificación del CO₂ residual que emiten las plantas de endulzamiento de gas natural, inicialmente se caracterizó la corriente que se alimentó a la simulación. Con la corriente caracterizada, se ingresó al software ProMax y se analizaron 3 tecnologías: (I) eliminación de H₂S por purificación con metildietanolamina (MDEA), (II) deshidratación con trietilenglicol (TEG), y (III) proceso criogénico Ryan Holmes. Además, se simuló el uso posterior del CO₂ en un sistema de reinyección de gas ácido en pozos de petróleo para el recobro mejorado de crudo. A continuación se describen los fundamentos metodológicos de cada etapa del proyecto.

3.1 Caracterización de la corriente de gas ácido

La muestra de la corriente de gas ácido se tomó de la torre regeneradora del sistema de endulzamiento de la planta que fue caso de estudio de este proyecto. Las condiciones de operación en el momento de la toma de muestra fueron: temperatura de fondos: 239 °F, temperatura de cima: 206 °F y presión: 9 psi. La muestra de gas ácido obtenida en el proceso de endulzamiento se analizó en un cromatógrafo de gases Agilent 7890 A GC 2010, equipado con una columna tipo capilar de fibra de vidrio (50 m x 200 μ m x 0.5 μ m marca Agilent) conectada a un detector de ionización de llama (FID) y dos columnas tipo empacada de acero inoxidable (105 m x 0,530 mm marca Agilent) rellenas con tierra de diatomeas, conectadas a un detector de conductividad térmica (TCD). Además, se analizó la humedad de la corriente de gas ácido con un sistema Drager (Colombia), que utiliza el principio colorimétrico para la medición. El análisis de concentración de H₂S se realizó con el mismo principio colorimétrico, donde el analito (gas ácido) reacciona con el

contenido sólido del tubo compuesto por yodo, ocurriendo las reacciones de las Ecuaciones 5 y 6.

$$H_2S + I_2 ---- 2HI + S_x$$
 Ec.5
 $SO_2 + I_2 ---- 2HI + H_2SO_4$ Ec.6

3.2 Sistema de endulzamiento de gas con amina.

El flujo de MDEA para este proceso se tomó del sistema de endulzamiento de la planta de gas natural tomada como caso de estudio, la cual normalmente trabaja con un flujo de 62 gpm, pero puede funcionar con 51,5 gpm sin generar aumento de la carga ácida de la solución. Por lo tanto, se tomaron 10,5 gpm de MDEA de los sistemas de amina principal y se recircularon al proceso de purificación de CO₂, para eliminar el H₂S de la corriente de gas ácido. Ambos procesos, el primario y el secundario, se simularon utilizando ProMax 3.2 (Houston, Texas). Se usó el paquete termodinámico Amine Sweetening SRK; la cual predice las propiedades de la fase líquida por el modelo electrolítico ELR y las propiedades de la fase de vapor utilizando las ecuaciones de estado de Redlich-Kong (SRK). Para definir el paquete termodinámico se tuvieron en cuenta las especificaciones establecidas en las tablas 24 y 25 (Ver anexo B).

La Figura 4 muestra el proceso de eliminación de H₂S simulado. El gas ácido proviene de la etapa de regeneración de la planta de amina principal (planta de caso de estudio), esta entra en la parte inferior (S1) de la segunda torre contactora de 6 etapas teóricas (estason las misas etapas teóricas de la torre contactora real de la etapa de endulzamiento de la planta del caso de estudio). La relación etapa real/etapa ideal ajusta el tiempo de residencia para la cinética Modelo TSWEET en ProMax; de acuerdo a lo anterior si el número de etapas especificadas para una columna de platos corresponde al número de etapas reales, la relación etapa real / ideal se establece en 1, y si se utilizan etapas ideales en lugar de etapas reales, la relación de la etapa Real / Ideal debe ser mayor que 1.

Si se establecen etapas ideales en lugar de bandejas reales, para el parámetro Real/ideal, se asume una eficiencia de la columna de tres bandejas reales / una etapa ideal.

Al establecer un absorbente como la amina, se utilizan etapas ideales en lugar de etapas reales. De esta manera, si la unidad tiene 18 etapas reales, esto es el equivalente de 6 etapas ideales. La columna se modela con 6 etapas debido a que la relación de la etapa real/ideal debe ser 3 para obtener el tiempo de residencia del líquido correcto en la columna.

La solución de amina proveniente del proceso de la planta de amina principal, se enfría con agua refrigerante y entra por la parte superior (S4). La amina en la parte inferior de la torre (S2) se envía a la etapa de amina primaria para ser regenerada. Esta configuración del proceso se estableció de esta manera para lograr la eliminación de H₂S de la corriente de gas ácido (Ver anexos C y D).

Comentado [m3]: Esto no se entiende

Figura 4. Proceso diseñado en ProMax para la absorción de H₂S. Las líneas azules representan los flujos de masa y las líneas rojas representan corrientes de energía. Equipos:
P: Bomba, E: intercambiador de calor.

3.3 Sistema de deshidratación con glicol

Este proceso es necesario para disminuir la saturación del gas ácido, de acuerdo a la Figura 5. El paquete de propiedades utilizado es una ecuación de modelo de estado basado en la ecuación de estado de Redlich-Kong modificada por Soave, la cual puede describir con precisión tanto la fase líquida como la fase vapor y es apropiada para sustancias polares Martínez(2011).

A continuación se especifican algunas recomendaciones que establece el simulador (ProMax 3.2) para iniciar la simulación del sistema de deshidratación:-La pureza típica del TEG, después de la regeneración debe ser del 98.7% W

- La temperatura del regenerador rehervidor de glicol está limitada por la temperatura de degradación térmica del glicol. Para TEG, la temperatura del calderín no debe exceder de 400 $^{\circ}$ F (204 $^{\circ}$ C).

- Use el SRK o el paquete de Propiedad Peng-Robinson para aplicaciones de glicol. Para aplicaciones de metanol, un paquete polar Propiedad (SRK polar o polar Peng-

Robinson) se debe utilizar para obtener resultados precisos (Ver anexo B).

La torre contactara cuenta con 7 etapas teóricas, calculadas de acuerdo a Perry et al. (2001) (Ver Anexo F). Sin embargo, debido a la elevada saturación del gas, fue necesario aumentar una etapa teórica para lograr una mayor absorción de agua. A medida que se incrementó el número de platos en la torre, se requirió una menor cantidad de glicol por cada libra de agua retirada. Por otro lado, Martínez (2011) demostró que los platos de burbujeo en un sistema TEG/gas muestran un 25% de eficiencia global. De acuerdo a lo anterior, para el cálculo de las etapas reales se dividió el número de etapas teóricas sobre la eficiencia global, y se obtuvieron 28 etapas reales. Para el cálculo de las etapas teóricas de la torre de regeneración, se utilizó el método *Shortcut Destillation* de ProMax, con el cual se determinan 3 etapas teóricas y 12 etapas reales (Ver Anexo D).

En este proceso, el gas entra en la parte inferior (Sd1) de la torre y el TEG entra por la parte superior (Sd13). El glicol rico (Sd2) sale de la parte inferior de la torre y pasa a través del intercambiador de calor de placas glicol rico/glicol pobre, lo que aumenta su temperatura. Después, entra en la parte superior de la torre de regeneración de tres etapas y el vapor de agua entra por la parte inferior. La solución regenerada de glicol pobre (Sd12) pasa a través del intercambiador de calor de calor de placas y luego se enfría con el gas de proceso, y regresa a la etapa de absorción (Sd13); mientras que el gas parcialmente saturado sale del tope de la torre (Sd15) y es enviado al sistema de reinyección (Ver pg 42). Allí eleva su presión y se recircula nuevamente a la etapa de deshidratación (Sd16), posteriormente pasa por el tamiz molecular especificado en la figura 5 (Mol sieve) donde la concentración de agua se reduce a 0% (Ver anexos C y D).

Comentado [m4]: El comentario de LMG de cuál tamiz molecular, no se ha respondido. No estoy segura d como responder este comentario o que requiere el jurado. Tampoco el del evaluador 2 que dice que las corrientes no se entienden. Este comentario se respondio, ajustando la figura numero 5

Figura 5. Proceso diseñado en ProMax para la deshidratación del gas acido. Las líneas azules representan los flujos de masa y las líneas rojas representan corrientes de energía. Equipos: P: Bomba, E: intercambiador de calor.

3.4 Sistema criogénico Ryan Holmes

La Figura 6 muestra el diagrama de flujo del proceso Ryan Holmes, donde el gas proveniente de la etapa 4 (Sc19) de compresión del sistema de reinyección de gas ácido se envía al sistema criogénico. Esta corriente debe ingresar al sistema Ryan Holmes a alta presión y libre de agua, por esta razón se utiliza el sistema de reinyección, que se ajusta las condiciones de operación del mismo. La torre de fraccionamiento cuenta con 6 etapas teóricas, para el cálculo de las mismas se empleó el método *Shortcut Destillation* de ProMax, y se determinaron 24 etapas reales (Ver anexo D).

El paquete termodinámico utilizado fue Peng-Robinson; esta ecuación da unos resultados

similares a la de Soave, sin embargo es más acertada para predecir las densidades de los compuestos en fase líquida, especialmente los apolares (Ver anexo B). El gas se somete a una caída de presión y pasa a través del intercambiador de calor donde la temperatura cae a -40 °F (Sr2). Después de esto, pasa a una torre de fraccionamiento, donde los componentes orgánicos se separan en la parte superior de la torre (Sr5), y el CO₂ se separa en la parte inferior en forma de líquido (Sr10) (Ver anexos C y D).

Comentado [m5]: Referencia!

Figura 6. Proceso diseñado en ProMax para el sistema criogénico Ryan Holmes. Las líneas azules representan los flujos de masa y las líneas rojas representan corrientes de energía. Equipos: E: intercambiador de calor.

3.4.1 Reinyección de gas ácido en pozos

La Figura 7 muestra el proceso diseñado para la reinyección de gas ácido en pozos, el cual podría ser usado en cualquier yacimiento cercano, que requiera el uso del recobro mejorado de crudo. En esta simulación se multiplica la corriente proveniente de la etapa 4 de compresión (Sc17) para utilizar una en el proceso de reinyección (Sc20) y otra como corriente de entrada del sistema Ryan Holmes (Sc19), esto con el fin de simular un solo

proceso de compresión (Ver anexos C y D).

Figura 7. Proceso diseñado en ProMax para la reinyección de CO₂. Las líneas azules representan los flujos de masa y las líneas rojas representan corrientes de energía. Equipos: Compresores de Gas, Aero enfriadores.

El paquete termodinámico utilizado para establecer esta etapa final de proceso, fue la ecuación de estado basado en la ecuación de Redlich-Kwong modificado por Soave, la cual es apropiada para fase gaseosa a alta presión (Ver anexo B). Para simular este sistema se tuvo en cuenta la relación de compresión de cada etapa, debido a que este es un factor determinante en el diseño y posterior funcionamiento de los compresores de gas. Se estipuló una relación de compresión de 2,5 (debido a que esta no debe ser mayor de 3, puesto que causaría daños sobre el compresor). El gas del sistema de deshidratación (Sc1) pasa a través de un sistema de compresión de 4 etapas, en donde se aumenta la presión del gas para volverlo a inyectar en un pozo de producción. Debido a que es necesario eliminar el agua del gas para evitar problemas de corrosión, la corriente de descarga de las cuatro etapas (Sc16) se toma y se envía a un sistema de adsorción de un tamiz molecular, en el que se absorbe el agua residual y el gas se devuelve a la etapa de succión 5 (Sc17), sin agua.

3.5 Recuperación de CO2 de las tecnologías simuladas

La recuperación de CO_2 en cada tecnología se determinó teniendo en cuenta las entradas y salidas de cada proceso, de acuerdo a la Ecuación 7.

$$R = \frac{output of CO_2}{input of CO_2} * 100 \quad \text{En lbmol/h Ec.7}$$

3.6 Metodologia de cálculo de costos por tecnología

Los costos CAPEX de cada tecnología se calcularon teniendo en cuenta cada equipo de cada sistema y los servicios auxiliares (Seider et al, 2014). Para los equipos, se tuvo en cuenta el tipo, el diámetro de las torres y el número de platos teóricos. Para los

Comentado [m6]: Referencia!

intercambiadores de calor se tuvo en cuenta el área de transferencia de calor y energía interna (Berghout et al, 2013).Los datos de los equipos para el cálculo de costos fueron obtenidos de la simulación de procesos

La moneda base de referencia para el cálculo de costos fue el dólar (USD).

3.6.1 Sistema de endulzamiento con amina

En el caso del proceso de amina, se estimó el costo de los siguientes equipos:

- Bomba

Para la selección de la bomba centrífuga, se consideraron las siguientes gamas:

- Caudal en volumen desde 10 gpm hasta 5 gpm.
- o Altura de la cabeza de 50 ft a 3200 ft
- o Viscosidad cinemática de 100 centistokes
- NPSH disponible superior a 5 ft.

De acuerdo con lo anterior, ya que la bomba reúne tres de los cuatro criterios, el cálculo fue elegido para bombas centrífugas, su factor de tamaño S establece que una bomba centrífuga dada pueda operar en un rango de velocidad de flujo y las combinaciones de la cabeza usando el Ecuación 8.

$$S = Q(H^{0.5})$$
 Ec.8

Donde Q es el caudal a través de la bomba en galones por minuto o metros cúbicos por segundo y H es la cabeza de la bomba en pies o metros.

Para el cálculo de la bomba se tuvieron en cuenta las siguientes variables (Ver tabla 3):

Comentado [m7]: El evaluador 2 preguntó:

Estos datos fueron obtenidos de un simulador en modo diseño? O son equipos y plantas existentes.

Respuesta? Se contesta en la pg anterior

Tabla 3. Datos de la bomba centrifuga

Flujo	10,54	gpm
Cabeza Dinámica	69,7820	ft

- Intercambiador de calor

Para calcular el costo de un intercambiador de tubo y carcasa, se tuvo en cuenta la siguiente ecuación:

$$C_P = F_P F_M F_L C_B$$
 Ec.9

Donde F_P corresponde a la siguiente ecuación:

$$F_P = 0.9803 + 0.018 \left(\frac{P}{100}\right) + 0.0017 \left(\frac{P}{100}\right)^2$$
 Ec.10

Donde F_M corresponde a la siguiente ecuación:

$$F_M = a + \left(\frac{A}{100}\right)^b \text{ Ec.11}$$

De acuerdo a la Figura 8, se escogieron los factores a y b para los materiales de construcción.

Materials of Construction Shell/Tube	<i>a</i> in Eq. (22.44)	<i>b</i> in Eq. (22.44)
Carbon steel/carbon steel	0.00	0.00
Carbon steel/brass	1.08	0.05
Carbon steel/stainless steel	1.75	0.13
Carbon steel/Monel	2.1	0.13
Carbon steel/titanium	5.2	0.16
Carbon steel/Cr-Mo steel	1.55	0.05
Cr-Mo steel/Cr-Mo steel	1.70	0.07
Stainless steel/stainless steel	2.70	0.07
Monel/Monel	3.3	0.08
Titanium/titanium	9.6	0.06

Figura 8. Materiales de construcción, para intercambiadores de tubo y carcasa (Factor

 $F_M)$

En este caso, se tomó como material de referencia acero al carbón, porque los dos factores son iguales a cero. Para el factor F_L , se seleccionó el valor de la Figura 9, de acuerdo a la longitud del tubo asumida, en la cual se tomaron 8 ft, con un F_L de 1,25.

Tube Length (ft)	F_L	
8	1.25	
12	1.12	
16	1.05	
20	1.00	

Figura 9. Longitud de la tubería (Factor F_L)

Para calcular el área del intercambiador se tuvo en cuenta la ecuación de diseño del intercambiador de calor: (Perry et al, 2001)

$$A = \frac{Q}{U\Delta T} \text{ Ec.12}$$

Para el factor C_B se utilizó el área del intercambiador ya calculada y se asumió un intercambiador en U, con la siguiente ecuación:

$$C_B = \exp\{11.147 - 0.9186[\ln(A)] + 0.09790[\ln(A)]^2$$
 Ec.13

Donde el factor de presión F_P se basa en la presión del lado de la carcasa, F_M es un factor material para varias combinaciones de materiales de tubo y la carcasa, el C_B depende del tipo de intercambiador de calor y el factor F_L es la longitud del tubo. Para el cálculo del equipo se tuvieron en cuenta los siguientes resultados arrojados por el simulador (Ver Tabla 4.).

UA	19072	Btu/h°F
Q	241404	Btu/h
Diferencia efectiva de temperatura media	12,65	°F
		Btu/h°F
U	150	ft^2
Presión de la carcasa	45,2	psi

Fabla 4.	Especificaciones	de Intercambiador
----------	------------------	-------------------

- Columna

Para calcular el costo total de la torre se tuvo en cuenta la presión de diseño, el número de platos, la altura y el peso. En este caso, las ecuaciones definidas para determinar el costo de los platos y la torre son los siguientes (Ecuación 14-15):

 $C_V = \exp\{7.2756 - 0.1825[\ln(W)] + 0.0519[\ln(W)]^2\} \text{ Ec.14}$ $C_T = N_T F_{NT} F_{TT} F_{TM} C_{BT} \text{ Ec.15}$

Para el cálculo de la columna se tuvieron en cuenta los siguientes datos y variables, especificados en la Tabla 5.

Comentado [m8]: Definir variables de ec. 14 y 15 como pidió LMG. Especifico los datos y variables utilizadas en la pag 5 para el cálculo.

Presión	7,5	psi
Temperatura	80,52	°F
Diámetro	9,5	in
Etapas teóricas	6	
ts	1.250	in
Densidad del acero	0,284	lb/in^3

Tabla 5. Especificaciones de torre contactora

- Servicios auxiliares

Para los servicios auxiliares de este sistema, se tuvo en cuenta el agua de refrigeración utilizada en el intercambiador de calor (S). La ecuación que determina el costo de este servicio se define como:

$$C_{alloc} = 1000S^{0.68}$$
 Ec.16

3.6.2 Sistema de deshidratación

- Bomba reciprocante

Para las bombas de pistón, el costo se determinó a partir de:

$$C_B = exp [7.6964+0.1986[\ln (Q)] + 0.0291[\ln (Q)]^2$$
 Ec.17

Donde C_B es un costo de la bomba, incluyendo el motor eléctrico, y Q es un flujo.

El cálculo de la bomba se determina teniendo en cuenta las siguientes variables (Ver tabla6):

Tabla 6. Datos de la bomba reciprocante

Flujo	0,27	gpm
Cabeza Dinámica	27,6	ft

- Intercambiador de calor

Para el cálculo de ambos intercambiadores de calor se tuvieron en cuenta las ecuaciones

9-13.

Los siguientes resultados arrojados por el simulador, se tuvieron en cuenta para el cálculo

de los equipos (Ver Tablas 7 y 8).

 Tabla 7. Especificaciones de Intercambiador de placas.

UA	204	Btu/h°F
Q	19994	Btu/h
Diferencia efectiva de temperatura media	92,26	°F
		Btu/h°F
U	1,6	ft^2
Presión de la		
carcasa	5	psi

UA	544,5	Btu/h°F
Q	7136	Btu/h
Diferencia efectiva de temperatura media	13,5	°F
U	4,2	Btu/h°F ft^2
Presión de la carcasa	3,8	psi

 Tabla 8. Especificaciones de Intercambiador 2.

- Torre de contacto y torre de regeneración

Para el cálculo de las torres se tuvieron en cuenta las ecuaciones 14-15. En la columna contactora y regeneradora se tuvieron en cuenta los siguientes datos y variables, especificados en las Tablas 9 y 10 para el cálculo del costo.

Tabla 9. Especificaciones de la torre contactora

m(gas)	765,000	lb/h
Densidad L	68,9	lb/ft^3
q	0,185050798	ft^3/h
Densidad G	0,148283929	lb/ft^3
Vg	10077,21634	ft/h

Tabla 10. Especificaciones de la torre regenera	dora
---	------

m(gas)	765,000	lb/h
Densidad L	8	lb/ft^3
q	1,59375	ft^3/h
Densidad G	0,052	lb/ft^3
V_{g}	5785,929139	ft/seg

- Aero enfriador

Para el cálculo del enfriador de aire, se tomó la siguiente ecuación:

$$C_P = 2500A^{0.40}$$
 Ec.18

El cálculo del Aero enfriador, se determina de acuerdo a las siguientes especificaciones

(Ver Tabla11).

Tabla11.	Especif	icaciones	del	Aero	enfriador
----------	---------	-----------	-----	------	-----------

Q	150	Btu/h
U	0,035714286	Btu/h°F ft^2
ΔT	42	°F
А	40	ft^2

- Tamiz molecular

El costo del tamiz molecular se realizó a partir de la siguiente ecuación:

$$C_P = 75S \text{ Ec.19}$$

Donde S es el factor de tamaño (volumen a granel).

Para el cálculo del tamiz molecular se tuvieron en cuenta las siguientes especificaciones

(Ver Tabla 12).

Tabla 12. Especificaciones del tamiz molecular

V	622	ft^3
Agua estimada	3400	lb
Agua de proceso	28	lb
Volumen del proceso	_	ft^3
actual	5	

- Rehervidor

Para el cálculo de la rehervidor, el costo fue determinado a partir de la siguiente ecuación:

$$C_P = F_P F_M C_B$$
 Ec.20

Las variables necesarias para el cálculo del costo del rehervidor, fueron las siguientes (Ver

Tabla 13).

Tabla 13. Especificaciones del rehervidor

Q	13646,6	Btu/h
Р	4,3	psi

Donde F_M es 1,4 para los tubos de acero de aleación Cr-Mo y 1,7 para acero inoxidable,

 F_P el rango de presión P y C_B es el costo base para Q.

3.6.3 Ryan Holmes

-Intercambiador de calor

Para el cálculo del intercambiador de calor se tuvo en cuenta las ecuaciones 9 - 13. Los siguientes resultados arrojados por el simulador, se tuvieron en cuenta para el cálculo (Ver tabla 14):

UA	4.790	Btu/h°F
Q	115157	Btu/h
Diferencia efectiva de temperatura media	24,11	°F
U	300	Btu/h°F ft^2
Presión de la		
carcasa	400	psi
Área	16	ft^2

Tabla 14. Especificaciones de Intercambiador.

-Columna

Para el cálculo de la torre se tuvo en cuenta las ecuaciones 14-15.

Las variables que se tuvieron en cuenta para el cálculo de la columna fueron las siguientes:

Tabla 15. Especificaciones de la columna.

m(gas)	765,000	lb/h
DensidadL1	69	lb/ft^3
q	0,184782609	ft^3/h
DensidadL2	58,7	lb/ft^3
Vg	31,68902579	ft/h

-Rehervidor

Para el cálculo de la rehervidor se tuvo en cuenta la ecuación 20 y las variables especificadas en la tabla 16.

Tabla 16. Especificaciones del rehervidor

Q	107146	Btu/h
Р	399,3	psi

-Aero enfriador

Para el cálculo del enfriador de aire, el costo se determinó a partir de la ecuación 16 y el área del equipo a partir de la ecuación 18.

Para el cálculo del Aero enfriador, se tuvieron en cuenta las siguientes variables (Ver tabla

17):

Q	83435	Btu/h
U	19,86547619	Btu/h°F ft^2
ΔT	42	°F
Α	100	ft^2

Tabla 17. Especificaciones del Aero enfriador

- Servicios auxiliares

Para los servicios auxiliares de este sistema, se tuvo en cuenta el refrigerante utilizado en el intercambiador de calor. La ecuación que determina el costo de este servicio se define como:

$$C_{alloc} = 11000S^{0.77}$$
 Ec.21

3.6.3.1 Reinyección de CO₂

En el caso del sistema de inyección que tiene en cuenta cuatro etapas de compresión con una potencia total de 44,3 hp, se calculó el costo teniendo en cuenta la siguiente ecuación:

$$C_P = F_D F_M C_B \mathbf{Ec.22}$$

Donde la unidad de motor eléctrico, fue $F_D = 1,15$ para una unidad de turbina de vapor y 1,25 para una unidad de turbina o compresor a gas, $F_M = 2,5$ para el acero inoxidable y 5,0 por aleación de níquel.

3.7. Combinación de tecnologías

Finalmente, la comparación de las tres tecnologías de purificación simuladas evidenció que ninguna por si sola cumplió los requisitos de pureza de CO₂ requeridos por la industria (Capitulo 2). De esta manera, se simularon combinaciones de las tecnologías estudiadas, que permitieran obtener la calidad de CO₂ requerida para su posterior uso. Capítulo 4. Resultados del estudio por cada tecnología

Capítulo 4. Resultados del estudio por cada tecnología

4.1 Caracterización de la corriente de gas ácido

Debido a las variaciones en la concentración del gas de entrada a la planta de endulzamiento de gas natural, se realizaron varias mediciones de la corriente de CO₂ de subproducto del proceso. La caracterización de esta corriente se muestra en la Tabla 18, mostrando cambios significativos en los productos. La concentración de CO₂ varió entre 70 y 93 % mol. Estas variaciones dependen de las condiciones de operación del sistema de regeneración, debido a que al aumentar la temperatura en el tope de la torre, se desplaza el equilibrio de la misma y se genera arrastre de amina con la corriente de vapor de agua. Bajo estas condiciones, no se logra la desorción adecuada de CO₂ en la solución de amina rica. De esta manera, se tomó la caracterización de la muestra 1 para la simulación de este estudio, que contiene 92 % mol de CO₂, 6,4 % mol de agua y 250 ppm de H₂S. Estas condiciones corresponden a las mejores condiciones de operación del gas de entrada, de otra manera el resultado de la caracterización de la corriente de gas acido seria errónea, debido a que en ciertos momentos de la operación se presenta inestabilidad en el gas de entrada a la planta de endulzamiento generando desestabilización de este sistema.

Comentado [m9]: El evaluador 2 pregunta: Porqué tomaron las mejores y no las peores?

Respuesta?

Tabla 18. Resultados de la caracterización de la corriente de CO_2 evaluada. Datos en %

mol.

0	Muestra			
Componente	1	2	3	
CO_2	92,07	70,19	93,07	
Metano	0	0,25	0	
Etano	1,18	0	1,19	
Propano	0,09	0	0,09	
i-Butano	0	0	0	
n-Butano	0	0	0	
i-Pentano	0	0	0	
n-Pentano	0	0	0	
Oxigeno	0,59	6,23	0,60	
Nitrógeno	5,06	23,33	5,06	
n-Hexano	0	0	0	
Agua	6,45	6.00	6.35	
H_2S	276 ppm	200 ppm	250 ppm	

4.2 Sistema de endulzamiento de gas con amina

Para el sistema de eliminación de H₂S del CO₂ que sale del proceso de endulzamiento principal, se diseñó una torre de absorción de 6 etapas teóricas (18 reales) teniendo en cuenta las mismas etapas teóricas del sistema de endulzamiento principal de la planta de gas natural. En la parte inferior entra en el gas ácido a tratar y en la parte superior ingresa la solución de MDEA, recirculada desde el sistema de amina primaria. Se tomaron dos variables de proceso para el caso de estudio: la temperatura del solvente y la presión del gas de entrada a la torre de contactora. Se varió la temperatura del solvente entre 70 y 140 °F y la presión del gas entre 20 y 55 psia (Tabla 19). El punto más alto de recuperación de CO₂ y eliminación de H₂S fue a 70 ° F y 20.2 psia (Figura 10). El aumento de la presión en el gas de entrada no influyó directamente en la absorción del gas ácido (H2S), mientras que la temperatura del solvente influyó directamente en este proceso (Figura 11). Según Jiménez et al. (2010), la temperatura de entrada del solvente a la torre de contacto debe estar 10 °F por encima de la temperatura del gas, para evitar la condensación de hidrocarburos. Sin embargo, en este caso y teniendo en cuenta que la corriente de gas tiene una alta concentración de compuestos ácidos, la temperatura del solvente se pudo reducir 23 °F por debajo de la temperatura de gas de tratamiento y así favorecer la reacción entre la amina y el H₂S y por ende el proceso de absorción (Luke et al, 2010). Para este caso, se verificó la viscosidad del solvente, para determinar en qué temperatura este dejaría de fluir. A temperaturas menores a 70 °F se puede presentar este fenómeno (Tabla 4). El objetivo del cambio de este parámetro se fundamentó en disminuir lo suficiente la temperatura de la solución para garantizar la mayor absorción de H₂S.

Presión de entrada	Temperatura del	Recuperación de	Viscosidad de la
del gas (psia)	Solvente (F)	$CO_2(\%)$	solucion (Cps)
30	140	75	2,47
35	130	72	2,86
40	120	69	3,35
45	110	66	3,96
50	100	66	4,72
51	90	75	5,68
53	80	81	6,91
55	70	85	8,50
20,2	70	94	8,50

Tabla 19. Condiciones operativas evaluadas en el sistema de endulzamiento

Figura 10. Presión del gas de entrada (lado izquierdo del eje y) y la temperatura del solvente (lado derecho del eje y). Recobro de CO_2 en función de la temperatura del solvente y presión del gas de entrada (eje x).

Figura 11. Efecto de la temperatura del solvente en la eliminación del H₂S

4.2.1 Costo del sistema

De acuerdo a las ecuaciones planteadas en el capítulo anterior, para el cálculo de costos de la tecnología de endulzamiento se obtuvieron los siguientes resultados, con todos los valores en USD:

- Bomba

El resultado del factor S de tamaño fue S = 88 y del factor C_B para determinar el costo fue $C_B =$ \$ 3.173.

- Intercambiador de calor
- El resultado del costo C_P fue $C_P =$ \$ 9.960.
- Torre de absorción

El peso de la torre contactora se calculó tomando como referencia el peso de una torre existente de 20 platos de 28,205 lb, con una presión de diseño de 400 psi. El resultado de tener en cuenta esta referencia, es el peso de la torre W = 1,431 lb y el resultado del costo total de la torre $C_V + C_T$ fue $C_V + C_T =$ \$ 18.988.

- Servicios auxiliares

El resultado del costo C_{alloc} fue $C_{alloc} =$ \$4.112.

4.3 Sistema de deshidratación con glicol

Con el objetivo de eliminar el agua saturada de la corriente de CO₂, se diseñó un sistema de deshidratación con TEG en una torre de contacto. Se varió la temperatura del rehervidor de 300 a 400 °F (Tabla 20), hasta alcanzar la concentración de TEG más alta en la torre de regeneración, y de esta manera conseguir una mayor absorción de agua libre en el gas; debido a que a mayor concentración de glicol en la solución regenerada, mayor va ser su capacidad de absorción. La concentración final en el proceso de regeneración se obtuvo a una temperatura de 400 °F, siendo la más alta posible sin llegar a la temperatura de degradación del TEG.

Temperatura en el	Contenido de agua	Composición del TEG
rehervidor (°F)	en el gas	(%mol) a la salida del
	(lb/MMSCF)	rehervidor
300	477	71,82
310	456	73,38
320	410	76,72
330	370	79,59
340	334	82,06
350	301	84,20
360	273	86,05
370	247	87,66
380	224	89,06
390	203	90,29
400	185	91,37

Tabla 20. Condiciones operativas evaluadas en el sistema de deshidratación con TEG

Comentado [m10]: La evaluadora LMG dice que es mejor decir la concentración de agua. Responderle . La Medida de humedad para gas siempre se da en lb/millón de pie cubico , si lo cambio a concentración debería correr nuevamente el caso de estudio y no es representativo para el estudio que estoy realizando. No me parece relevante el comentario.

Adicional a lo anterior, para eliminar la cantidad de agua total de la corriente de gas, fue necesario añadir un tamiz molecular, el cual está incluido en la salida del tope de la torre contactora del sistema de deshidratación (Ver capítulo 3, Figura 5, corriente Sd16), donde el gas pasa a través del lecho adsorbente y retiene selectivamente las moléculas de agua, hasta llevar la concentración del agua a 0 % mol (Ribon et al., 2010).

Comentado [m11]: la evaluadora LMG sigue preguntando por el tamiz. Se repondio en el capitulo anterior ¿debo repetirlo en todos?

Figura 12. Temperatura del rehervidor en función de la composición del TEG.

4.3.1 Costo del sistema de deshidratación con TEG

De acuerdo a las ecuaciones planteadas en el capítulo anterior, para el cálculo de costos de la tecnología de deshidratación se obtuvieron los siguientes resultados, con todos los valores en USD:

- Bomba reciprocante

El resultado del costo C_B fue $C_B =$ \$1.783.

- Intercambiador de calor

El resultado del costo C_P fue $C_P =$ \$20.486, con un costo total de la torre:

- Aero enfriador

El resultado del costo C_P fue $C_P =$ \$15.773.

- Tamiz molecular

El resultado del costo C_P fue $C_P = 380 .

- Rehervidor

El resultado del costo C_P fue $C_P = 3.157 .

- Torre de Absorción

El resultado del costo $C_V + C_T$ fue $C_V + C_T =$ \$18.701

- Torre de Regeneración

El resultado del costo $C_V + C_T$ fue $C_V + C_T = 34.483

4.4 Proceso criogénico Ryan Holmes

En el proceso criogénico Ryan Holmes para la purificación de CO₂, se establecieron las condiciones de operación más favorables para obtener la mayor recuperación de CO₂. Para establecer estas condiciones de funcionamiento, se tomaron 9 puntos de análisis, variando la temperatura y la presión de la corriente de entrada al proceso. Estos puntos se establecieron desde 0 hasta -40 °F y la presión desde 320 a 400 psi (Tabla 21 y Figura 13). Esto con el fin de obtener la máxima recuperación de CO₂ en la parte inferior de la torre

y la más baja en el tope. Para la torre de fraccionamiento se establecieron 6 etapas teóricas, teniendo en cuenta las condiciones de diseño definidas en el simulador de procesos (ProMax 3.2) para procesos criogénicos. Sin embargo, se encontró que al aumentar en el número de las etapas de la torre, no varió la recuperación de CO_2 ni el perfil de la torre, ya que este proceso estaba en su máximo punto operativo. De acuerdo a la Figura 13, la recuperación de CO_2 es proporcional a la presión e inversamente proporcional a la temperatura. Esto se debe a que al aumentar la presión de la corriente de entrada en la torre, el equilibrio cambia favoreciendo la recuperación de CO_2 en el fondo de la misma. A condiciones de -40 °F y 400 psi se obtuvo una máxima recuperación de 0,99927.

Tabla 21. Condiciones operativas evaluadas en el sistema Ryan Holmes

Temp. del	Presión	CO ₂ en fondos	CO ₂ en tope
condensador (°F)	(psi)	(%mol)	(%mol)
0	320	0,99555	0,77616
-5	325	0,99553	0,71952
-10	330	0,99550	0,66541
-15	335	0,99647	0,61391
-20	340	0,99743	0,56505
-25	345	0,99840	0,51884
-30	350	0,99836	0,47528
-35	355	0,99832	0,43435
-40	400	0,99927	0,39599

4.4.1 Costo del sistema Ryan Holmes

De acuerdo a las ecuaciones planteadas en el capítulo anterior, para el cálculo de costos de la tecnología Ryan Holmes se obtuvieron los siguientes resultados, expresados en USD:

- Intercambiador de calor

 $C_P = 15.558

- Columna

$$C_V + C_T = $116.798$$

Comentado [m12]: Comentario del evaluador 2: Revisar el tipo de gráfico para Variables dependientes e independientes. Respuesta?. Se especifica en la descripción de la figura
- Rehervidor

$$C_P = $15.074$$

- Aero enfriador

 $C_P = 15.773

- Servicios auxiliares

 $C_{alloc} = 11.000

4.4.1.2 Reinyección de CO2

El resultado del costo C_P fue $C_P =$ \$164.421.

4.5 Recuperación de CO2 y costo por tecnología

La Tabla 22 muestra los resultados obtenidos para tecnología en cuanto a la recuperación de CO₂, y se comparan con los de algunos autores. La recuperación del proceso criogénico es mayor del 95% y de acuerdo con Mondal et al. (2012), este proceso produce CO₂ líquido de alta pureza. En cuanto al sistema de adsorción (tamiz molecular), la literatura reporta máxima recuperación de 95%. En este estudio se combinó el sistema de deshidratación con TEG y un tamiz molecular, obteniendo una recuperación de CO₂ del 99,7%, debido a la combinación de un proceso de absorción y otro de adsorción (los dos sin reacción química).La capacidad de absorción del sistema de TEG depende de la saturación del gas, sin embargo la combinación del tamiz molecular con el sistema de deshidratación es más efectiva para disminuir de significativamente el contenido de agua en el gas (lb/MMSCFD).

En cuanto al proceso de absorción con reacción química (sistema de endulzamiento con amina), se obtuvo un porcentaje de recuperación dentro del rango establecido en la literatura. Sin embargo, no alcanza el 98% debido a que en este proceso se ajustan las variables operativas para obtener la mayor desorción de H₂S, sin tener en cuenta la concentración final de agua ni hidrocarburos condensables.

Comentado [m13]: LMG pregunta: Y cuál sería la capacidad máxima de adsorción de agua??

Respuesta?

Tabla 22. Comparación entre las diferentes te	ecnol	ogías
--	-------	-------

Tecnología	Estabilidad Operativa	Recuperación de CO ₂
Absorción (Obtenida)	Moderada (Minkkinen et al, 2004)	94%
Criogénico (Obtenida)	Moderada (Minkkinen et al, 2004)	99,9%
Adsorción (Obtenida)	Moderada (Minkkinen et al, 2004)	99,7%
Absorción (otro autor)	Moderada (WJ Choi et al, 2009)	90 - 98% (Dindore et al, 2007)
Criogénico (otro autor)	Baja (M Axel et al,1997)	>95%(Abass et al,2010)
Adsorción (otro autor)	Moderada (B Feng et al, 2010)	80-95% (Axel et al, 1997)

La Tabla 23 especifica el costo total de cada tecnología y la combinación de las mismas. En el caso de sistema de endulzamiento con amina, uniendo los sistemas de deshidratación y compresión se utilizan sólo tres etapas de compresión de las cuatro que componen el sistema. Esta combinación produce un CO₂ apto para su reinyección en los pozos de petróleo y otros usos para diferentes industrias, debido a que se obtiene una recuperación de 99,7% de CO₂. Por otro lado, el sistema criogénico ofreció una alta recuperación de CO₂, pero el costo de la tecnología fue más alto debido a que requiere procesos de compresión y secado de gas.

Tecnología	Costos (USD)Costo (USD)
Ryan Holmes	\$ 158.430,17
Amina 2	\$ 32.129,31
Deshidratación + Tamiz	
Molecular	\$ 89.772,22
Sistema de Reinyección	\$ 164.421,42
Amina 2 + Deshidratación	
+Tamiz Molecular + Compresión	\$ 286.322,96
Ryan Holmes + Deshidratación +	
Tamiz Molecular + Compresión	\$ 412.623, 82

Tabla 23. Resumen de los costos de cada tecnología

5. Conclusiones

5. Conclusiones

- La absorción con MDEA elimina el 99% del H₂S que viaja en la corriente de CO₂ residual del proceso de endulzamiento de gas natural. Cuando se combina con el sistema de deshidratación y el tamiz molecular, es posible obtener una pureza de CO₂ del 99,7%.
- El grado de pureza obtenido con la combinación del proceso de compresión, hidratación y sistema criogénico Ryan Holmes fue del 99,9%, siendo más eficiente en cuanto a la recuperación de CO₂.
- El sistema criogénico Ryan Holmes es el más costoso de las tecnologías evaluadas por su alto consumo energético. Al mismo tiempo, el costo de la combinación de tecnologías de endulzamiento, deshidratación y compresión, resulta ser más económico.
- La mejor tecnología para la purificación de CO₂ es la combinación de los sistemas de endulzamiento y deshidratación, teniendo en cuenta la recuperación de CO₂ obtenida (99.7%) y el costo asociado a las tecnologías (\$286.322,96) en comparación con el sistema Ryan Holmes(412.623,82).

Comentado [m14]: Aquí sería bueno dar valores de %rec y costos, para que sea más obvia la conclusión.

6. Referencias

- C.P.Tsokos., R.D. Wooten., 2010. Parametric analyse of carbon dioxide in the atmosphere, Journal of Applied sciences, vol 10, 440-441.
- Herrera Felipe., 1999 .Resolución No.071 Reglamento único de transporte de gas natural. Ministerio de Minas y Energía, 49-50.
- Aboudheir Ahmed., McIntyre Gavin., 2009. Industrial Design and Optimization of CO₂ Capture, Dehydration, and Compression Facilities, Gas Processors Association Convention, Bryan Research & Engineering, 5.
- Minkkinen Ari., Heigold Bob., 2004. GPSA. Association Engineering data book, Tulsa, Oklahoma: twelfth Edition — FPS, 19-20.
- K. Sabilr., 2011.Carbón dioxides hydrate potential in technological applications, Journal of Applied Sciences, vol 11, 3535-3538.
- Calderón et al, SCRIBD, 2011. [En línea]. Available: http://es.scribd.olcom/doc/69081122/Metodos-de-Recobro-Mejorado-Petroleo. [Último acceso: 23 Noviembre 2013]
- B.Moreno et al., 2013. Simulación del Proceso de Absorción Química con Soluciones de Aminas para la Purificación Biogás, La Serena, vol 24, 25-32.
- Addington et al., 2010. An evaluation of General "Rules of thumb" in amine Sweetening Unit design and Operation: Bryan Research and Engineering, Inc, 2-3.

- Daniels et al., 2001. Design and Operation of a Selective Sweetening Plant Using MDEA, Bryan research and Engineering, Inc, 2-4.
- Xu Gang., Yang Youngling., 2012. A novel CO₂ cryogenic liquefaction and separation system. Energy, vol 42,522-529.
- Finn J Adrianfin., 2014. Processing of Carbon Dioxide Rich Gas, Constain-GPA Conference, 3.
- G.Wiciak at al., 2011.Experimental stand for CO₂, membrane separation, Journal of Power Technologies, vol 91,171-178.
- Marcia J Martinez, 2011. Deshidratación de gas natural. Ingenieros consultores, 141-152, Caracas.
- Aguilera. E., Sanchez. M & Ortiz. J., 2012. Adsorbentes para la deshidratación de gas húmedo dulce: avances y tendencias. Corporación Mexicana de Investigación En Materiales S.A. de C.V., XXXIII (1), 47–63.
- Aguilera. Nadia. Sánchez. Esther., 2012. Natural sensitivity analysis using dehydration process simulation, scielo, 119–130.
- J.Gutierrez et al., 2003. Diseño de Procesos en Ingeniería Química, Editorial Reverté, 35-40.
- S.Nagy et al., 2006. Use of carbon dioxide in underground natural gas storage processe, Acta Montanistica Slovaca Rocník vol 11, 116-117.
- Renganathan et al., 2012. CO₂ utilization for gasification of carbonaceous feedstocks: A thermodynamic analysis, Chemical Engineering Science, 159-160.

- Addington et al., 2010. An evaluation of General "Rules of thumb" in amine Sweetening Unit Desing and Operation: Bryan Research and Engineering, Inc, 2-3.
- M. Aresta et al., 1998. Perspectives in the use of Carbon Dioxide, METEA Research Center, vol.33, 4-7.
- J. Alarcon et al., 2006. Planta para la recuperación del dióxido de carbono de los gases de combustión, Técnica Industrial vol 261, 35-40.
- M. Peters. et al., 1978. Diseño de Plantas y su Evaluación Económica para Ingenieros Químicos, Editorial Géminis, Buenos Aires.
- o Georgiadis et al., 2008. Energy Systems Engineering, Volume 5, 232.
- ASTM D1265 11, Liquefied petroleum gases, LPG, Sampling, Butane, LPG (liquefied petroleum gases)-sampling, Manual method, Propane, Sampling gaseous materials/applications, Sampling petroleum products, 10 January 2011, 2-5.
- Jiménez Marcela et al., 2010. Metodología para el diseño conceptual de plantas de endulzamiento de gas natural empleando membranas permeables, Universidad Industrial de Santander, 35.
- Kh. Mohamadbeigy., 2008. Studying of the effectiveness parameters on gas dehydration plant, Petroleum & Coal, 48.
- Ribon Margarita et al., 2010. Métodos de deshidratación de gas natural, El reventón energético, Vol. 8 Nº 2,59.

- Mondal et al, 2012. Progress and trends in CO₂ capture/separation technologies, Energy, 439.
- M Axel, S Xiaoshan., 1997. Research and development issues in CO₂ capture, Energy Conversion and Management, 38.
- WJ Choi., JB Seo., SY Jang., JH Jung., KJ Oh., 2009. Removal characteristics of CO2 using aqueous MEA/AMP solutions in the absorption and regeneration process, Journal of Environmental Sciences, 21.
- S Mamun., VY Dindore., HF Svendsen., 2007 Kinetics of the reaction of carbon dioxide with aqueous solutions of 2-((2-aminoethyl) amino) ethanol. Industrial & Engineering Chemistry Research, 46.
- A Abass., A Olajire., 2010. CO₂ capture and separation technologies for end-ofpipe, applications-a review. Energy, 35.
- B Feng., M Du., TJ Dennis., K Anthony., MJ Perumal., 2010. Reduction of energy requirement of CO₂ desorption by adding acid into CO₂-loaded solvent. Energy and Fuels,24.
- Seider Warren., Seader J.D., Lewin Daniel, Widagdo Soemantri., 2009. Product and Process Design Principles, Third Edition, 138-488-573-569, United States.
- Perry Robert, Green Don Green, Maloney J, 2001.Chemical Engineering Manual, Seventh Edition, 11.4, United States.
- Zhang et al., 2013, CO₂ elevation improves photosynthetic performance in progressive warming environment in white birch seedlings, F1000 Research, 1-2.

- Berghout et al., 2013. Techno-economic performance and challenges of applying CO₂ capture in the industry. A case studies of five industrial plants, International Journal of Greenhouse Gas Control, 259-270.
- Sabil et al., 2011. Carbón dioxide hydrates potential in technological applications, Journal of Applied Sciences, 3535-3538.
- Pineda Pradilla Ender., 2012. Evaluación de la corrosión interna generada por el sistema H₂S-CO₂-H₂O en gasoductos, Universidad Industrial de Santander, 17-19.

Anexo A: Especificación de calidad de CO2 y costos

13-X	-22769 Gases: M	edical, Specialty Inc	sutrial-Statewide				
ategroy (1) one - Medical Gases - Commodity Code: 430-48-08436						price per	
lines 1 to 18)	Size	Qty	unit	designation	cu. ft.	cu. ft.	unit price
Dxygen	Small	1	cylinder	OX M-E	25	\$ 0.102	\$ 2.55
Dxygen	Medium	1	cylinder	OX M-M	141	\$ 0.039	\$ 5.53
Dxygen	Large	1	cylinder	OX M-K	282	\$ 0.024	\$ 6.86
arbon Dioxide	Small	1	cylinder	CD-M-E	62	\$ 0.077	\$ 4.75
arbon Dioxide	Medium	1	cylinder	CD M-30	263	\$ 0.041	\$ 10.81
arbon Dioxide	Large	1	cylinder	CD M-50	437	\$ 0.030	\$ 13.00
litrous Oxide - (N2O)	Small	1	cylinder	NS M-E	60	\$ 0.211	\$ 12.65
litrous Oxide - (N2O)	Medium	1	cylinder	NS M-M	257	\$ 0.176	\$ 45.13
litrous Oxide - (N2O)	Large	1	cylinder	NS M-56	549	\$ 0.109	\$ 59.89
litrogen (N2)	Small	1	cylinder	NI M-E	21	\$ 0.202	\$ 4.25
litrogen (N2)	Medium	1	cylinder	NI M-M	114	\$ 0.049	\$ 5.55
litrogen (N2)	Large	1	cylinder	NI M-K	255	\$ 0.027	\$ 6.91
sir (N2)	Small	1	cylinder	AI M-E	21	\$ 0.298	\$ 6.25
ir (N2)	Medium	1	cylinder	AI M-M	116	\$ 0.069	\$ 8.00
sir (N2)	Large	1	cylinder	AI M-K	256	\$ 0.039	\$ 9.91
arbon Dioxide in Oxygen	Small	1	cylinder	MM OXCD3-E	25	\$ 0.860	\$ 21.50
arbon Dioxide in Oxygen	Medium	1	cylinder	MM OXCD3-M	114	\$ 0.232	\$ 26.50
arbon Dioxide in Oxygen	Large	1	cylinder	MM OXCD3-K	252	\$ 0.126	\$ 31.69

Figura 14. Costos del CO₂ a nivel industrial

NOMBRE DEL PRODUCTO	CONCENTRACIÓN
Grado de Dióxido de carbono (CO ₂) en bebidas	99,9%
Dióxido de carbono para consumo en alimentos	99,8%
Dióxido de carbono líquido, USP	> 99,5%

Figura 15. Calidad del CO₂

Anexo B: Criterios de selección de paquete termodinámico de acuerdo a ProMax 3.2

D	Decements Declaration	Germante
Process	Property Package	Comments
Amine Sweetening	Amine Sweetening	Use either SRK or PR for vapor phase properties
	Electrolytic ELR	
Sour Water Stripping	Amine Sweetening	Use either SRK or PR for vapor phase properties
	Electrolytic ELR	
Caustic Treating	Caustic Treating	Use either SRK or PR for vapor phase properties
Sulfur Decovery	Sulfur	Use either SRK of PR for vapor phase properties
Hydrocarbon Dew Point Control	SRK or Peng-Robinson	DEPG is also known as Coastal AGR II Solvent
using DEPG	bitit of Fong Roomson	
Physical Solvent Acid Gas	SRK or Peng-Robinson	DEPG is also known as Coastal AGR II Solvent:
Removal using DEPG or		Propylene Carbonate is also known as Fluor Solvent
Propylene Carbonate		тм
Physical Solvent Acid Gas	SRK Polar or Peng-Robinson	NMP is N-Methyl-2-Pyrrolidone or M-Pyrol used in
Removal using NMP or Methanol	Polar	the Purisol ® process
Gas Processing	SRK or Peng-Robinson	
Gas Processing with Methanol	SRK Polar or Peng-Robinson	When methanol is present, the Polar version of the
Injection	Polar	property package must be used for accurate
		predictions
Refrigerant Systems (e.g.	SRK or Peng-Robinson	
R13/R22, Propane, etc.)		
Ammonia Absorption	Tillner-Roth and Friend NH3 +	System cannot contain components other than
Refrigeration	H2O	ammonia and water
Acid Gas Injection Systems	SRK or Peng-Robinson	If injecting near pure CO_2 with operation near the
T <i>i i</i>	CDV - D D. L'arra	critical, use Peng-Robinson with EOS densities.
Fractionation	SRK of Peng-Robinson	
Classed Delay day they	SRK of Peng-Robinson	
Glycol Denydration	SRK of Peng-Robinson	When methodal is present the Deleguagion of the
Denydration/Hydrocarbon Bomoval Using Mothanal	SKK Polar of Peng-Robinson	when methanol is present, the Polar version of the
Kemoval Using Wethanoi	Folai	property package must be used for accurate
Crude Oil	SRK or Peng-Robinson	productions
Distillation/Fractionation	bitit of Fong Roomson	
Air Separation	SRK or Peng-Robinson	
Chemicals	Any non-Electrolytic Gibbs	Example - separation of Acetone/Acetic Acid/Acetic
	Excess/Activity Coefficient	Anhydride
	Model (e.g. DUNIFAC, TK	5
	Wilson, UNIQUAC, etc.)	
Methanol-Water Distillation	NRTL	
(Binary System)		
Steam Systems: Turbines,	NBS Steam Tables	Use this property package when accuracy of
Condensers, Superheaters		thermophysical and transport properties of water or
		steam are important.
Hot Oil System	Heat Transfer Fluid	Heat transfer fluids cannot be mixed in the same
		circuit.

Tabla 24. Paquetes de propiedades aplicables para procesos comunes

Model	Pure	Binary	Mixture	VLE	VLLE	Notes
EOS (Equation of State)						
<u>SRK (Soave Redlich</u> Kwong)	•	•	•	•	•	Gas Processing with No Methanol, Refinery Distillation
Peng-Robinson	•	•	•	•	•	Gas Processing with No Methanol
SRK Polar	•	•	•	•	•	Gas Processing with Methanol or NMP
Peng-Robinson Polar	•	•	•	•	•	Gas Processing with Methanol or NMP
Lee-Kesler	•	•	•	•		Light Hydrocarbon Systems with $\rm H_2S~$ and $\rm CO_2,$ No 2nd Liquid Phase
Tillner-Roth and Friend NH3 + H2O	•	•		•		Ammonia Absorption Refrigeration, Ammonia and/or Water Only
Specialty - Pure Component						
NBS Steam Tables	•			•		All Steam/Water Properties
Span and Wagner CO2 EOS	•			•		Pure CO_2 Only; Exceptional Accuracy in the Critical Region
Wagner and Pruss H2O EOS	•			•		Water Only, Thermodynamic Properties Only
Tillner-Roth, Harms-Watzenberg and Baehr NH3 EOS	•			•		Ammonia Only
Heat Transfer Fluid	•				All Liquid Phase Properties and Vapor Phase Transport Calculated by Correlation	

Figura 16. Selección de paquetes termodinamicos

Anexo C: Simulaciones de las diferentes tecnologías en ProMax 3.2.

En las figuras 17 a la 21 se muestran las diferentes configuraciones de proceso realizadas, utilizando el simulador de procesos. ProMax 3.2.

Figura 17. Sistema de amina principal

Figura 18. Sistema de amina secundario

Figura 19. Sistema de deshidratación con trientilenglicol.

Figura 20. Ryan Holmes

Figura 21. Sistema de reinyección de Gas

Anexo D: Resultados de las corrientes de proceso de las diferentes tecnologías de acuerdo a la simulación de procesos en ProMax 3.2.

Process Streams		1	2	3	4	5	6
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:	Acid gas	Secondary Contactor CO2 Purification	Amine-1	Secondary Contactor CO2 Purification	Amine Flow	P-Amine
	To Block:	Secondary Contactor CO2 Purification	Dehy	Secondary Contactor CO2 Purification	P-Amine	Amine-1	To Amine 1
Property	Units						
Temperature	°F	112.000	709.037	70*	805.316	124.260	805.821
Pressure	psig	750.000	550.000	442.035	750.000	452.035	39.2035*
Mole Fraction Vapor	%	100	100	0	0	0	0
Mole Fraction Light Liquid	%	0	0	100	100	100	100
Mole Fraction Heavy Liquid	%	0	0	0	0	0	0
Molecular Weight	lb/lbmol	422.342	434.508	313.798	313.644	313.798	313.644
Mass Density	lb/ft^3	0.147531	0.148284	651.092	654.223	641.219	654.243
Molar Flow	lbmol/h	193.519	176.230	171.461	173.190	171.461	173.190
Mass Flow	lb/h	817.311	765.733	5380.41	5431.99	5380.41	5431.99
Vapor Volumetric Flow	ft^3/h	5539.91	5163.97	826.368	830.296	839.091	830.271
Liquid Volumetric Flow	gpm	690.690	643.820	103.028	103.517	104.614	103.514
Std Vapor Volumetric Flow	MMSCFD	0.17625	0.160504	156.160	157.735	156.160	157.735
Std Liquid Volumetric Flow	sgpm	200.232	188.372	105.400	106.586	105.400	106.586
Compressibility		0.993753	0.993054	0.00491775	0.00176	0.0046076	0.00438241
Specific Gravity		145.823	150.024	104.393	104.896	102.811	104.899
API Gravity				378.891	287.216	378.874	286.695
Enthalpy	Btu/h	-3.16E+11	-2.94E+11	-2.27E+12	-2.29E+12	-2.24E+12	-2.29E+12
Mass Enthalpy	Btu/lb	-3870.08	-3838.36	-4211.24	-4212.47	-4166.37	-4212.35
Mass Cp	Btu/(lb*°F)	0.216562	0.205929	0.796661	0.79977	0.856246	0.799689
Ideal Gas CpCv Ratio		128.018	128.828	113.363	113.220	112.307	113.219
Dynamic Viscosity	cP	0.015881	0.0148911	850.088	700.371	313.315	700.103
Kinematic Viscosity	cSt	672.023	626.921	815.081	668.315	305.038	668.040
Thermal Conductivity	$Btu/(h*ft*^{\circ}F)$	0.010473	0.00938082	0.202497	0.20185	0.204215	0.201849
Surface Tension	lbf/ft			0.00413244	0.00414044?	0.0037386	0.00414024
Net Ideal Gas Heating Value	Btu/ft^3	171.007	187.323	471.141	466.442	471.141	466.442
Net Liquid Heating Value	Btu/lb	515.435	814.972	4999.17	4947.97	4999.17	4947.97

Tabla 25. Resultados de la simulación del sistema de endulzamiento con amina

secundario.

Process Streams		1	2	3	4	5	6
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:	Dehy	T-Dehy	3° stage	T-Dehy	Mol-sieve	Mol-sieve
	To Block:	T-Dehy	E-Dehy	Mol-sieve	Comp		XCHG-100
Property	Units						
Temperature	°F	70.9082	96.6509	110.000	108.319	110.000	110.000
Pressure	psig	5.50000	5.50000	735.732	2.50000	735.732	727.732
Mole Fraction Vapor	%	100	0	99.8875	100	0	100
Mole Fraction Light Liquid	%	0	100	0.112532	0	100	0
Mole Fraction Heavy Liquid	%	0	0	0	0	0	0
Molecular Weight	lb/lbmol	43.4508	117.169	43.7908	43.7913	18.0153	43.8910
Mass Density	lb/ft^3	0.148283	69.1654	7.12900	0.117623	61.8565	7.02367
Molar Flow	lbmol/h	17.6230	1.34107	17.3800	17.3802	0.0672818	17.3127
Mass Flow	lb/h	765.733	157.131	761.085	761.102	1.21210	759.873
Vapor Volumetric Flow	ft^3/h	5164.02	2.27182	106.759	6470.69	0.0195953	108.188
Liquid Volumetric Flow	gpm	643.825	0.283240	13.3102	806.735	0.00244306	13.4883
Std Vapor Volumetric Flow	MMSCFD	0.160504	0.0122140	0.158291	0.158292	0.000612777	0.157678
Std Liquid Volumetric Flow	sgpm	1.88372	0.279758	1.87422	1.87425	0.00242308	1.87180
Compressibility		0.993054	0.00547535	0.753105	0.995374	0.0357072	0.757970
Specific Gravity		1.50024	1.10897		1.51200	0.991783	1.51544
API Gravity			-5.94783			9.92284	
Enthalpy	Btu/h	-2.93916E+06	-387760	-2.92447E+06	-2.90731E+06	-8224.89	-2.91679E+06
Mass Enthalpy	Btu/lb	-3838.36	-2467.74	-3842.49	-3819.87	-6785.65	-3838.53
Mass Cp	Btu/(lb*°F)	0.205929?	0.564179	0.335434	0.209419	0.968512	0.331058
Ideal Gas CpCv Ratio		1.28828	1.04177	1.27813	1.27852	1.32394	1.27798
Dynamic Viscosity	cP	0.0148912	21.2471		0.0158528	0.636879	0.0182550
Kinematic Viscosity	cSt	6.26932	19.1774		8.41381	0.642763	0.162254
Thermal Conductivity	$Btu/(h*ft*^{\circ}F)$	0.00938093?	0.116860		0.0102837	0.363956	0.0133836
Surface Tension	lbf/ft		0.00304597			0.00474083	
Net Ideal Gas Heating Value	Btu/ft^3	18.7323	2824.43	18.9621	18.9837	0	19.0358
Net Liquid Heating Value	Btu/lb	81.4972	8854.45	87.6030	87.7832	-1059.76	89.4332

Tabla 26. Resultados de la simulación del sistema de deshidratación con TEG.

Process Streams	7	8	9	10	11	12
Properties	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	PUMP-100	E-Dehy	Make-up	XCHG-100	D-R	R-Dehy
	T-Dehy	R-Dehy	XCHG-100	PUMP-100	R-Dehy	D-R
Property						
Temperature	111.025	300*	192.708	111*	400.000	314.227
Pressure	15*	4.50000	3.80000	1.80000	4.30000	4.30000
Mole Fraction Vapor	0	2.56356	0	0	100	0
Mole Fraction Light Liquid	100	97.4364	100	100	0	100
Mole Fraction Heavy Liquid	0	0	0	0	0	0
Molecular Weight	138.856	117.169	138.856	138.856	26.7482	116.989
Mass Density	68.9057	8.85222	65.9789	68.9054	0.0528578	61.5962
Molar Flow	1.09826	1.34107	1.09826	1.09826	0.266000	1.36376
Mass Flow	152.499	157.131	152.499	152.499	7.11504	159.544
Vapor Volumetric Flow	2.21316	17.7505	2.31134	2.21317	134.607	2.59016
Liquid Volumetric Flow	0.275927	2.21305	0.288167	0.275928	16.7822	0.322929
Std Vapor Volumetric Flow	0.0100025	0.0122140	0.0100025	0.0100025	0.00242263	0.0124206
Std Liquid Volumetric Flow	0.270287	0.279758	0.270287*	0.270287	0.0136193	0.283782
Compressibility	0.00947505	0.0297056	0.00528960	0.00513204	0.992625	0.00413845
Specific Gravity	1.10481		1.05788	1.10480	0.923544	0.987609
API Gravity	-6.63695		-6.63534	-6.63505		-5.98427
Enthalpy	-355909	-367760	-348778	-355917	-30228.9	-372490
Mass Enthalpy	-2333.84	-2340.46	-2287.08	-2333.89	-4248.59	-2334.71
Mass Cp	0.552720	0.650687	0.591933	0.552721	0.501946	0.660613
Ideal Gas CpCv Ratio	1.03427	1.03366	1.03092	1.03427	1.17468	1.03333
Dynamic Viscosity	16.6915		4.42011	16.6918	0.0159383	1.29661
Kinematic Viscosity	15.1224		4.18222	15.1227	18.8241	1.31412
Thermal Conductivity	0.113668		0.113942	0.113668	0.0188676	0.115014?
Surface Tension	0.00297897		0.00272594?	0.00297902		0.00238920?
Net Ideal Gas Heating Value	3448.72	2824.43	3448.72	3448.72	249.370	2824.68
Net Liquid Heating Value	9152.28	8854.45	9152.28	9152.28	2773.29	8867.82

Tabla 27. Resultados de la simulación del sistema de deshidratación con TEG.

Process Streams	13	14	15	16	17	18
Properties	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	R-Dehy	D-C	D-C	D-R		Make-up
	D-C	R-Dehy		E-Dehy	Make-up	`
Property						
Temperature	308.045	266.785	266.785	400.000	100*	
Pressure	4	4	4	4.30000	11.2035*	3.80000
Mole Fraction Vapor	100	0	100	0	0	
Mole Fraction Light Liquid	0	100	0	100	100	
Mole Fraction Heavy Liquid	0	0	0	0	0	
Molecular Weight	20.0191	89.3384	19.3259	138.855	139.909	138.856
Mass Density	0.0435460	63.5985	0.0444656	58.0766	69.3102	
Molar Flow	0.245747	0.00243313	0.243313	1.09775	0.000500153	0
Mass Flow	4.91962	0.217372	4.70225	152.429	0.0699761	0
Vapor Volumetric Flow	112.975	0.00341788	105.750	2.62462	0.00100961	
Liquid Volumetric Flow	14.0852	0.000426126	13.1844	0.327225	0.000125873	
Std Vapor Volumetric Flow	0.00223817	2.21601E-05	0.00221601	0.00999794	4.55521E-06	0
Std Liquid Volumetric Flow	0.00998514	0.000389368	0.00959577	0.270163	0.000123999	0
Compressibility	0.993039	0.00320666	0.992149	0.00468986	0.00840221	
Specific Gravity	0.691204	1.01971	0.667270	0.931177	1.11129	
API Gravity		-5.51072		-6.63528	-6.68287	
Enthalpy	-26065.6	-566.795	-25649.0	-328612	-163.426	0
Mass Enthalpy	-5298.30	-2607.49	-5454.63	-2155.84	-2335.46	-2287.06
Mass Cp	0.445759	0.680241	0.440080	0.670895	0.545956	
Ideal Gas CpCv Ratio	1.28865	1.04594	1.30758	1.02642	1.03459	
Dynamic Viscosity	0.0150189	1.69003	0.0142095	0.793388	21.2180	
Kinematic Viscosity	21.5312	1.65893	19.9495	0.852833	19.1111	
Thermal Conductivity	0.0179205	0.125155	0.0169023	0.106722	0.113350	
Surface Tension		0.00270006		0.00201421	0.00301107	
Net Ideal Gas Heating Value	27.9709	2035.84	7.89219	3448.71	3478.15	3448.72
Net Liquid Heating Value	-398.082	8309.79	-800.624	9152.30	9162.07	9152.28

Tabla 28. Resultados de la simulación del sistema de deshidratación con TEG.

Process Streams	19	21	22
Properties	Solved	Solved	Solved
Phase: Total	RCYL- DEHY	E-Dehy	XCHG-100
	Make-up	RCYL- DEHY	Comp4
Property			
Temperature	192.749	192.748	139.664
Pressure	3.80000	3.80000	726.732
Mole Fraction Vapor	0	0	100
Mole Fraction Light Liquid	100	100	0
Mole Fraction Heavy Liquid	0	0	0
Molecular Weight	138.856	138.855	43.8910
Mass Density	65.9774	65.9773	6.25279
Molar Flow	1.09776	1.09775	17.3127
Mass Flow	152.429	152.429	759.873
Vapor Volumetric Flow	2.31033	2.31032	121.525
Liquid Volumetric Flow	0.288041	0.288040	15.1512
Std Vapor Volumetric Flow	0.00999795	0.00999794	0.157678
Std Liquid Volumetric Flow	0.270163	0.270163	1.87180
Compressibility	0.00528937	0.00528936	0.808184
Specific Gravity	1.05786	1.05785	1.51544
API Gravity	-6.63532	-6.63520	
Enthalpy	-348615	-348612	-2.90966E+06
Mass Enthalpy	-2287.06	-2287.05	-3829.13
Mass Cp	0.591951	0.591955	0.303229
Ideal Gas CpCv Ratio	1.03092	1.03092	1.27128
Dynamic Viscosity	4.41782	4.41792	0.0186669
Kinematic Viscosity	4.18015	4.18025	0.186371
Thermal Conductivity	0.113942	0.113942	0.0137721
Surface Tension	0.00272580	0.00272580?	
Net Ideal Gas Heating Value	3448.71	3448.71	19.0358
Net Liquid Heating Value	9152.27	9152.30	89.4332

Tabla 29. Resultados de la simulación del sistema de deshidratación con TEG.

Process Streams		1	1 - Sour Feed	2	3	4
Properties	Status:	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:	VLVE-100		Demethanizer	Condenser 1	XCHG-100
	To Block:	XCHG-100	VLVE-100	Condenser 1	Demethanizer	Demethanizer
Property	Units					
Temperature	К	291.037	316.483*	260.222	238.706	233.150*
Pressure	Pa	2.85923E+06*	5.17402E+06*	2.82475E+06	2.82475E+06	2.84544E+06
Mole Fraction Vapor	%	100	100	100	0	0
Mole Fraction Light Liquid	%	0	0	0	100	100
Mole Fraction Heavy Liquid	%	0	0	0	0	0
Molecular Weight	kg/mol	0.0438910	0.0438910	0.0410147	0.0411555	0.0438910
Mass Density	kg/m^3	63.8716	118.088	72.3137	958.651	1106.85
Molar Flow	mol/s	2.17842	2.17842	2.01903	1.99315	2.17842
Mass Flow	kg/s	0.0956131	0.0956131	0.0828099	0.0820291	0.0956131
Vapor Volumetric Flow	m^3/s	0.00149696	0.000809677	0.00114515	8.55672E-05	8.63831E-05
Liquid Volumetric Flow	m^3/s	0.00149696	0.000809677	0.00114515	8.55672E-05	8.63831E-05
Std Vapor Volumetric Flow	m^3/s	0.0516078	0.0516078	0.0478317	0.0472187	0.0516078
Std Liquid Volumetric Flow	m^3/s	0.000117933	0.000117933*	0.000111839	0.000110401	0.000117933
Compressibility		0.811959	0.730823	0.740491	0.0611013	0.0582057
Specific Gravity		1.51544	1.51544	1.41613	0.959557	1.10790
API Gravity					117.490	44.6320
Enthalpy	J/s	-853833	-853833	-716679	-735050	-887583?
Mass Enthalpy	J/kg	-8.93009E+06	-8.93009E+06	-8.65452E+06	-8.96084E+06	-9.28307E+06?
Mass Cp	J/(kg*K)	1104.81?	1369.04	1319.66	2242.66	1975.05
Ideal Gas CpCv Ratio		1.28218	1.27798	1.30176	1.31403	1.32152
Dynamic Viscosity	Pa*s	1.58882E-05	1.84078E-05	1.42941E-05	0.000142101	0.000183158
Kinematic Viscosity	m^2/s	2.48752E-07	1.55882E-07	1.97668E-07	1.48230E-07	1.65477E-07
Thermal Conductivity	W/(m*K)	0.0187735	0.0234493	0.0184828	0.142108	0.155949
Surface Tension	N/m				0.00797182	0.00931342
Net Ideal Gas Heating Value	J/m^3	709254	709254	5.78492E+06	5.60908E+06	709254
Net Liquid Heating Value	J/kg	208022	208022	3.16674E+06	3.05377E+06	208022

Tabla 30. Resultados de la simulación del sistema Ryan Holmes

Process Streams		4 - Residue	5	6	7
Properties	Status:	Solved	Solved	Solved	Solved
Phase: Total	From Block:	Condenser 1	Demethanizer	K-100	K-100
	To Block:		K-100	Demethanizer	
Property	Units				
Temperature	К	238.706	265.497	265.799	265.799
Pressure	Pa	2.82475E+06	2.85923E+06	2.85923E+06	2.85923E+06
Mole Fraction Vapor	%	100	0	100	0
Mole Fraction Light Liquid	%	0	100	0	100
Mole Fraction Heavy Liquid	%	0	0	0	0
Molecular Weight	kg/mol	0.0301698	0.0439958	0.0439497	0.0440560
Mass Density	kg/m^3	55.6859	968.485	77.6167	968.151
Molar Flow	mol/s	0.0258781	4.96858	2.81604	2.15254
Mass Flow	kg/s	0.000780738	0.218597	0.123764	0.0948323
Vapor Volumetric Flow	m^3/s	1.40204E-05	0.000225710	0.00159456	9.79520E-05
Liquid Volumetric Flow	m^3/s	1.40204E-05	0.000225710	0.00159456	9.79520E-05
Std Vapor Volumetric Flow	m^3/s	0.000613063	0.117708	0.0667133	0.0509947
Std Liquid Volumetric Flow	m^3/s	1.43730E-06	0.000268620	0.000152125	0.000116495
Compressibility		0.771100	0.0588399	0.732592	0.0588739
Specific Gravity		1.04168	0.969400	1.51747	0.969066
API Gravity			42.8098		41.8716
Enthalpy	J/s	-5957.24	-2.01838E+06	-1.11242E+06	-874605
Mass Enthalpy	J/kg	-7.63027E+06	-9.23334E+06	-8.98825E+06	-9.22265E+06
Mass Cp	J/(kg*K)	1614.38	2607.82	1257.31	2612.01
Ideal Gas CpCv Ratio		1.31411	1.30353	1.30406	1.30246
Dynamic Viscosity	Pa*s	1.20873E-05	0.000115590	1.50302E-05	0.000115736
Kinematic Viscosity	m^2/s	2.17062E-07	1.19351E-07	1.93647E-07	1.19544E-07
Thermal Conductivity	W/(m*K)	0.0224156	0.117292	0.0174649	0.116981
Surface Tension	N/m		0.00596069		0.00597206
Net Ideal Gas Heating Value	J/m^3	1.93280E+07	378069	296013	485417
Net Liquid Heating Value	J/kg	1.50360E+07	28861.7	-14878.1	85945.9

Tabla 31. Resultados de la simulación del sistema Ryan Holmes

Process Streams					1
Properties	Status:	Solved	Solved	Solved	Solved
Phase: Total	From Block:				Comp
		MultiplierMixer-	MultiplierMixer-	MultiplierMixer-	1st Stage
Duran autor	To Block:	1-1	1-1	0-1	Aftercooler
Property	Units				
Temperature	°F		139.664	139.664	108.319
Pressure	psig	726.732	726.732	726.732*	2.50000
Mole Fraction Vapor	%		100	100	100
Mole Fraction Light Liquid	%		0	0	0
Mole Fraction Heavy Liquid	%		0	0	0
Molecular Weight	lb/lbmol	43.8910	43.8910	43.8910	43.7913
Mass Density	lb/ft^3		6.25279	6.25279	0.117623
Molar Flow	lbmol/h	0*	17.3127	34.6255*	17.3802
Mass Flow	lb/h	0	759.873	1519.75	761.102
Vapor Volumetric Flow	ft^3/h		121.525	243.051	6470.69
Liquid Volumetric Flow	gpm		15.1512	30.3024	806.735
Std Vapor Volumetric Flow	MMSCFD	0	0.157678	0.315356	0.158292
Std Liquid Volumetric Flow	sgpm	0	1.87180	3.74360	1.87425
Compressibility			0.808184	0.808184	0.995374
Specific Gravity			1.51544	1.51544	1.51200
API Gravity					
Enthalpy	Btu/h	0	-2.90966E+06	-5.81931E+06	-2.90731E+06
Mass Enthalpy	Btu/lb	-3829.13	-3829.13	-3829.13*	-3819.87
Mass Cp	Btu/(lb*°F)		0.303229	0.303229	0.209419
Ideal Gas CpCv Ratio			1.27128	1.27128	1.27852
Dynamic Viscosity	cP		0.0186669	0.0186669	0.0158528
Kinematic Viscosity	cSt		0.186371	0.186371	8.41381
Thermal Conductivity	Btu/(h*ft*°F)		0.0137721	0.0137721	0.0102837
Surface Tension	lbf/ft				
Net Ideal Gas Heating Value	Btu/ft^3	19.0358	19.0358	19.0358	18.9837
Net Liquid Heating Value	Btu/lb	89.4332	89.4332	89.4332	87.7832

Tabla 32. Resultados de la simulación del sistema de Reinyección

Process Streams		2	3	4	5
Properties	Status:	Solved	Solved	Solved	Solved
Phase: Total	From Block:	4st Stage Aftercooler	XCHG-100	MultiplierMixer-O-1	SPLT-100
Property	Units	Shu Stage Serusser	Wen	51 1 1 100	Tipenne
Temperature	°F	110*	57.2053	139.664	139.664
Pressure	psig	253.892	1281.02	726.732	726.732
Mole Fraction Vapor	%	99.9997	0	100	100
Mole Fraction Light Liquid	%	0.000309807	100	0	0
Mole Fraction Heavy Liquid	%	0	0	0	0
Molecular Weight	lb/lbmol	43.7908	43.8910	43.8910	43.8910
Mass Density	lb/ft^3	2.08099	54.3677	6.25279	6.25279
Molar Flow	lbmol/h	17.3801	17.3127	34.6255	17.3127
Mass Flow	lb/h	761.088	759.873	1519.75	759.873
Vapor Volumetric Flow	ft^3/h	365.734	13.9766	243.051	121.525
Liquid Volumetric Flow	gpm	45.5980	1.74253	30.3024	15.1512
Std Vapor Volumetric Flow	MMSCFD	0.158291	0.157678	0.315356	0.157678
Std Liquid Volumetric Flow	sgpm	1.87423	1.87180	3.74360	1.87180
Compressibility		0.921417	0.188448	0.808184	0.808184
Specific Gravity			0.871710	1.51544	1.51544
API Gravity			33.6210		
Enthalpy	Btu/h	-2.91203E+06	-2.99429E+06?	-5.81931E+06	-2.90966E+06
Mass Enthalpy	Btu/lb	-3826.14	-3940.51	-3829.13	-3829.13
Mass Cp	Btu/(lb*°F)	0.233541	0.681906	0.303229	0.303229
Ideal Gas CpCv Ratio		1.27813	1.29139	1.27128	1.27128
Dynamic Viscosity	cP		0.0887244	0.0186669	0.0186669
Kinematic Viscosity	cSt		0.101878	0.186371	0.186371
Thermal Conductivity	$Btu/(h*ft*^{\circ}F)$		0.0619465	0.0137721	0.0137721
Surface Tension	lbf/ft		1.46237E-07		
Net Ideal Gas Heating Value	Btu/ft^3	18.9649	19.0358	19.0358	19.0358
Net Liquid Heating Value	Btu/lb	87.6256	89.4332	89.4332	89.4332

Tabla 33. Resultados de la simulación del sistema de Reinyección

Process Streams		6	7	8	9
Properties	Status:	Solved	Solved	Solved	Solved
Phase: Total	From Block:	Stage 1	2st Stage Aftercooler	Stage 2	SPLT-100
	To Block:	2st Stage Aftercooler	1nd Stage Scrubber	3st Stage Aftercooler	Ryhan Holmes
Property	Units				
Temperature	°F	262.456	110*	274.448	139.664
Pressure	psig	24.4448	24.4448	81.8066	726.732
Mole Fraction Vapor	%	100	99.9996	100	100
Mole Fraction Light Liquid	%	0	0.000404033	0	0
Mole Fraction Heavy Liquid	%	0	0	0	0
Molecular Weight	lb/lbmol	43.7913	43.7913	43.7910	43.8910
Mass Density	lb/ft^3	0.217071	0.276913	0.537054	6.25279
Molar Flow	lbmol/h	17.3802	17.3802	17.3801	17.3127
Mass Flow	lb/h	761.102	761.102	761.093	759.873
Vapor Volumetric Flow	ft^3/h	3506.23	2748.52	1417.16	121.525
Liquid Volumetric Flow	gpm	437.141	342.673	176.685	15.1512
Std Vapor Volumetric Flow	MMSCFD	0.158292	0.158292	0.158292	0.157678
Std Liquid Volumetric Flow	sgpm	1.87425	1.87425	1.87424	1.87180
Compressibility		0.995501	0.989212	0.989485	0.808184
Specific Gravity		1.51200		1.51198	1.51544
API Gravity					
Enthalpy	Btu/h	-2.88186E+06	-2.90746E+06	-2.88039E+06	-2.90966E+06
Mass Enthalpy	Btu/lb	-3786.43	-3820.07	-3784.54	-3829.13
Mass Cp	Btu/(lb*°F)	0.229329	0.211371	0.233235	0.303229
Ideal Gas CpCv Ratio		1.24891	1.27812	1.24708	1.27128
Dynamic Viscosity	cP	0.0195649		0.0199177	0.0186669
Kinematic Viscosity	cSt	5.62671		2.31527	0.186371
Thermal Conductivity	Btu/(h*ft*°F)	0.0142662		0.0147093	0.0137721
Surface Tension	lbf/ft				
Net Ideal Gas Heating Value	Btu/ft^3	18.9837	18.9837	18.9714	19.0358
Net Liquid Heating Value	Btu/lb	87.7832	87.7832	87.6797	89.4332

Tabla 34. Resultados de la simulación del sistema de Reinyección

Process Streams		10	11	12	13
Properties	Status:	Solved	Solved	Solved	Solved
Phase: Total	From Block	1nd Stage Scrubber	3st Stage Aftercooler	1nd Stage Scrubber	2nd Stage Scrubber
Thase. Total	FIOII DIOCK.	Thu Stage Scrubber	5st Stage Attercooler	Thu Stage Scrubber	2nd Stage Sci ubbei
	To Block:	Stage 2	2nd Stage Scrubber		Stage 3
Property	Units	a	a a a a a a a a a a		
Temperature	°F	110	110*	110	110
Pressure	psig	24.4448	81.8066	24.4448	81.8066
Mole Fraction Vapor	%	100	99.9997	0	100
Mole Fraction Light Liquid	%	0	0.000285858	100	0
Mole Fraction Heavy Liquid	%	0	0	0	0
Molecular Weight	lb/lbmol	43.7910	43.7910	126.254	43.7908
Mass Density	lb/ft^3	0.276910	0.703971	68.7561	0.703967
Molar Flow	lbmol/h	17.3801	17.3801	7.02217E-05	17.3801
Mass Flow	lb/h	761.093	761.093	0.00886576	761.088
Vapor Volumetric Flow	ft^3/h	2748.52	1081.14	0.000128945	1081.14
Liquid Volumetric Flow	gpm	342.673	134.792	1.60763E-05	134.792
Std Vapor Volumetric Flow	MMSCFD	0.158292	0.158292	6.39553E-07	0.158291
Std Liquid Volumetric Flow	sgpm	1.87424	1.87424	1.57715E-05	1.87423
Compressibility		0.989216	0.972780	0.0114862	0.972783
Specific Gravity		1.51198		1.10241	1.51198
API Gravity				-6.13261	
Enthalpy	Btu/h	-2.90744E+06	-2.90854E+06	-21.2966	-2.90853E+06
Mass Enthalpy	Btu/lb	-3820.08	-3821.53	-2402.12	-3821.54
Mass Cp	Btu/(lb*°F)	0.211367	0.216156	0.561306	0.216154
Ideal Gas CpCv Ratio		1.27813	1.27813	1.03794	1.27813
Dynamic Viscosity	cP	0.0159345		15.3872	0.0160439
Kinematic Viscosity	cSt	3.59235		13.9710	1.42278
Thermal Conductivity	Btu/(h*ft*°F)	0.0103926		0.115050	0.0105723
Surface Tension	lbf/ft			0.00296037	
Net Ideal Gas Heating Value	Btu/ft^3	18.9714	18.9714	3079.39	18.9649
Net Liquid Heating Value	Btu/lb	87.6797	87.6797	8973.46	87.6256

Tabla 35. Resultados de la simulación del sistema de Reinyección

Process Streams		14	15	16		17
Properties	Status:	Solved	Solved	Solved	Solved	
Phase: Total	From Block:	Stage 3	2nd Stage Scrubber	3nd Stage Scrubber	3nd Sta	age Scrubber
	To Block:	4st Stage Aftercooler		CMPR-100		
Property	Units	-				
Temperature	°F	297.279	110	110		110
Pressure	psig	253.892	81.8066	253.892		253.892
Mole Fraction Vapor	%	100	0	100		0
Mole Fraction Light Liquid	%	0	100	0		100
Mole Fraction Heavy Liquid	%	0	0	0		0
Molecular Weight	lb/lbmol	43.7908	98.9026	43.7908		51.1729
Mass Density	lb/ft^3	1.48124	68.6310	2.08098		68.1135
Molar Flow	lbmol/h	17.3801	4.96825E-05	17.3800		5.38446E-05
Mass Flow	lb/h	761.088	0.00491373	761.085		0.00275539
Vapor Volumetric Flow	ft^3/h	513.820	7.15963E-05	365.734		4.04529E-05
Liquid Volumetric Flow	gpm	64.0606	8.92629E-06	45.5980		5.04347E-06
Std Vapor Volumetric Flow	MMSCFD	0.158291	4.52490E-07	0.158291		4.90397E-07
Std Liquid Volumetric Flow	sgpm	1.87423	8.81734E-06	1.87422		5.10694E-06
Compressibility		0.974223	0.0225358	0.921420		0.0328965
Specific Gravity		1.51198	1.10040	1.51198		1.09210
API Gravity			-5.55232			-4.11962
Enthalpy	Btu/h	-2.87814E+06	-12.8162	-2.91202E+06		-9.62643
Mass Enthalpy	Btu/lb	-3781.61	-2608.23	-3826.15		-3493.68
Mass Cp	Btu/(lb*°F)	0.243009	0.590939	0.233539		0.711231
Ideal Gas CpCv Ratio		1.24374	1.04905	1.27813		1.09988
Dynamic Viscosity	cP	0.0206865	12.5588	0.0164329		5.02959
Kinematic Viscosity	cSt	0.871849	11.4237	0.492976		4.60976
Thermal Conductivity	Btu/(h*ft*°F)	0.0156980	0.120462	0.0111613		0.150439
Surface Tension	lbf/ft		0.00302694			0.00348525
Net Ideal Gas Heating Value	Btu/ft^3	18.9649	2287.88	18.9621		914.191
Net Liquid Heating Value	Btu/lb	87.6256	8464.16	87.6030		6322.61

Tabla 36. Resultados de la simulación del sistema de Reinyección

Process Streams		19	20	21	22
Properties	Status:	Solved	Solved	Solved	Solved
Phase: Total	From Block:	1st Stage Aftercooler	Pipeline	CMPR-100	Well
	To Block:	Stage 1	XCHG-100	FAXR-100	
Property	Units				
Temperature	°F	100*	57.2053	298.757	179.816
Pressure	psig	1.50000	726.458	735.732	4120.20*
Mole Fraction Vapor	%	100	4.54103	100	100
Mole Fraction Light Liquid	%	0	95.4590	0	0
Mole Fraction Heavy Liquid	%	0	0	0	0
Molecular Weight	lb/lbmol	43.7913	43.8910	43.7908	43.8910
Mass Density	lb/ft^3	0.112039	43.1305	4.33493	39.9878
Molar Flow	lbmol/h	17.3802	17.3127	17.3800	17.3127
Mass Flow	lb/h	761.102	759.873	761.085	759.873
Vapor Volumetric Flow	ft^3/h	6793.16	17.6180	175.570	19.0026
Liquid Volumetric Flow	gpm	846.940	2.19653	21.8893	2.36916
Std Vapor Volumetric Flow	MMSCFD	0.158292	0.157678	0.158291	0.157678
Std Liquid Volumetric Flow	sgpm	1.87425	1.87180	1.87422	1.87180
Compressibility		0.995437	0.135807	0.930274	0.661186
Specific Gravity		1.51200		1.51198	1.51544
API Gravity					
Enthalpy	Btu/h	-2.90861E+06	-2.98685E+06	-2.88308E+06	-2.95210E+06
Mass Enthalpy	Btu/lb	-3821.58	-3930.72	-3788.12	-3884.99
Mass Cp	Btu/(lb*°F)	0.208210	1.00917?	0.267298	0.541893
Ideal Gas CpCv Ratio		1.28051	1.29139	1.24353	1.26306
Dynamic Viscosity	cP	0.0156412		0.0216456	0.0522819
Kinematic Viscosity	cSt	8.71524		0.311721	0.0816213
Thermal Conductivity	Btu/(h*ft*°F)	0.0100724		0.0169916	0.0426190
Surface Tension	lbf/ft				
Net Ideal Gas Heating Value	Btu/ft^3	18.9837	19.0358	18.9621	19.0358
Net Liquid Heating Value	Btu/lb	87.7832	89.4332	87.6030	89.4332

Tabla 37. Resultados de la simulación del sistema de Reinyección

Process Streams		23	24
Properties	Status:	Solved	Solved
Phone: Total	Enom Blooks	EAVD 100	Comm4
rilase. I otal	FIOIII BIOCK:	FAXK-100	Comp4
	To Block:	3° stage	MultiplierMixer-I-1
Property	Units		
Temperature	°F	110*	139.664
Pressure	psig	735.732	726.732
Mole Fraction Vapor	%	99.8875	100
Mole Fraction Light Liquid	%	0.112532	0
Mole Fraction Heavy Liquid	%	0	0
Molecular Weight	lb/lbmol	43.7908	43.8910
Mass Density	lb/ft^3	7.12900	6.25279
Molar Flow	lbmol/h	17.3800	17.3127
Mass Flow	lb/h	761.085	759.873
Vapor Volumetric Flow	ft^3/h	106.759	121.525
Liquid Volumetric Flow	gpm	13.3102	15.1512
Std Vapor Volumetric Flow	MMSCFD	0.158291	0.157678
Std Liquid Volumetric Flow	sgpm	1.87422	1.87180
Compressibility		0.753105	0.808184
Specific Gravity			1.51544
API Gravity			
Enthalpy	Btu/h	-2.92447E+06	-2.90966E+06
Mass Enthalpy	Btu/lb	-3842.49	-3829.13
Mass Cp	Btu/(lb*°F)	0.335434	0.303229
Ideal Gas CpCv Ratio		1.27813	1.27128
Dynamic Viscosity	cP		0.0186669
Kinematic Viscosity	cSt		0.186371
Thermal Conductivity	Btu/(h*ft*°F)		0.0137721
Surface Tension	lbf/ft		
Net Ideal Gas Heating Value	Btu/ft^3	18.9621	19.0358
Net Liquid Heating Value	Btu/lb	87.6030	89.4332
Gross Ideal Gas Heating Value	Btu/ft^3	20.8976	20.7833
Gross Liquid Heating Value	Btu/lb	104.376	104.542

Tabla 38. Resultados de la simulación del sistema de Reinyección
Anexo E: Resultados de los equipos principales de las diferentes tecnologías de acuerdo a la simulación de procesos en ProMax 3.2.

Sistema de endulzamiento.

Tabla 39. Resultados de intercambiador de calor.

Heat Exchanger Report							
Amine-1							
Client Name:	MASA c/o Dyprotec			Job:	Q08-0281		
Location:	Colombia			Modified:	05:36 p.m., 13/09/2015		
Flowsheet:	Amine 2			Status:	Solved 04:47 p.m., 19/09/2015		
Stream Connections							
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block		
5	Inlet	Amine Flow	3	Outlet	Secondary Contactor CO2 Puri	fication	
Q-3	Energy				-		
			Block : Scalar Da	ata			
Pressure Drop	1*	psi	Heat Release Curve Type	Plug Flow			
Temperature Change Heat Duty	-54.2600 -241390	°F Btu/h	Heat Release Curve Increments	4			

Tabla 40. Resultados de torre contactora

Column Report								
Secondary Contactor CO ₂ Purification								
Client Name:	MASA c/o Dyprotec			Job: Q08-02	281			
Location:	Colombia			Modified: 04:58	p.m., 19/09/2015			
Flowsheet:	vsheet: Amine 2			Status: Solved	d 09:54 a.m., 2015			
Stage Connections								
Stage	Connection Type	Stream	Direction	Block				
1	Inlet	3	From	Amine-1				
1	Vapor Outlet	2	То	Dehy				
6	Inlet	1	From	Acid gas				
6	Light Liquid Outlet	4	То	P-Amine				
Block : Scalar Data								
Number of Stages	6*		Column Type	TSWEET Kinetics*				
Flash Type	VLE*		Enthalpy Model	Composition-Dependent*				
Ecc. D	x · 1 · x · · 10		Maximum Initial	50				
Efficiency Phase	Light Liquid*		Iterations	50				
Pressure Change	2*	psi						

Tabla 41. Resultados de bomba centrifuga

Pump Report								
P-Amine								
Client Name:	MASA c/o Dypr	otec		Job:	Q08-0281			
Location:	Colombia			Modified:	05:30 p.m., 13/09/2015			
Flowsheet:	Amine 2			Status:	Solved 09:54 a.m., 20/09/2015			
Stream Connections								
	Connection			Connection				
Stream	Туре	Other Block	Stream	Туре	Other Block			
		Secondary Contactor CO2						
4	Inlet	Purification	6	Outlet	To Amine 1			
PUMP-101	Energy							
Block : Scalar Data								
Overall			Dynamic					
Efficiency	75*	%	Head	69.7820	ft			
Pressure								
Change	31.7035	psi	Power	0.255256	hp			

Sistema de deshidratación.

Tabla 42. Resultados bomba reciprocante

		1	Pump Report PUMP-100		
Client Name:	MASA c/o Dyprotec			Job:	Q08-0281
Location:	Colombia			Modified:	09:59 a.m., 20/09/2015
Flowsheet:	Dehy			Status:	Solved 10:49 a.m., 20/09/2015
		Blo	ck : Scalar Da	ta	
Overall Efficiency	65*	%	Dynamic Head	27.5856	ft
Pressure Change	13.2000	psi	Power	0.00326868	hp

Tabla 43. Resultados de la torre contactora

Column Report						
			T-Dehy			
Client Name:	MASA c/o Dyprotec			Job:	008.0281	
Location:	Colombia			Modified:	11.37 nm 19/09/201	5
Flowsheet:	Dehy			Status:	Solved 10:49 a.m., 20	/09/2015
	17]	
			Stage Connections			
Stage	Connection Type	Stream	Direction		Block	
1	Inlet	7	From		PUMP-100	
1	Vapor Outlet	4	То		Comp	
7	Inlet	1	From		Dehy	
7	Light Liquid Outlet	2	То		E-Dehy	
			Block : Scalar Data			
Number of Stages	7*		Column Type	Equilibrium		
Flash Type	VLE*		Enthalpy Model	Boston-Britt		
Efficiency Phase	Light Liquid		Maximum Initial Iterations	50		
Column Add-ons	None*		Inner Loop model	Boston-Sullivan		
Boston-Sullivan Kb	VERDADERO		Bottoms Head	0	psi	
Pressure Change	3*	psi				

Column Report R-Dehy							
Client Name:	MASA c/o Dyprotec			Job:	Q08-0281		
Location:	Colombia			Modified:	10:49 a.m., 20/09	9/2015	
Flowsheet:	Dehy			Status:	Solved 10:49 a.m	n., 20/09/2015	
		Stage	Connections				
Stage	Connection Type	Stream	Direction		Block		
1	Inlet	14	From		D-C		
1	Inlet	8	From		E-Dehy		
1	Vapor Outlet 13		То		D-C		
3	Inlet 11		From	D-R			
3	Light Liquid Outlet	Light Liquid Outlet 12 To		D-R			
		Column	n Attachment				
Туре	Block Name	Туре	Block Name				
Condenser	D-C	Reboiler	D-R				
		Block :	Scalar Data				
Number of Stages	3*		Column Type	Equilibrium			
Flash Type	VLE*		Enthalpy Model	Boston-Britt			
Efficiency Phase	Light Liquid		Maximum Initial Iterations	50*			
Outer Loop Iterations	1		Hydraulics	FALSO Boston-			
Use Last Solution	VERDADERO		Inner Loop model	Sullivan			
Column Add-ons Degrees of Freedom	Partial Condenser w/Reboiler* 0		Phase Threshold Bottoms Head	0.500000	% psi		

Tabla 44. Resultados torre absorbedora

Sistema Ryhan Holmes.

Tabla 45. Resultados torre de fraccionamiento

Column Report						
Demethanizer						
Client Name:				Job:		
Location:				Modified:	05:10 p.m., 20/09/2015	
Flowsheet:	Gas Processing			Status:	Solved 05:10 p.m., 20/0	9/2015
			Stage Connection	18		
Stage	Connection Type	Stream	Direction		Block	
1	Inlet	3	From	Co	ondenser 1	
1	Vapor Outlet	2	То	Co	ondenser 1	
6	Inlet	6	From		K-100	
6	Inlet	4	From	Х	CHG-100	
6	Light Liquid Outlet	5	То		K-100	
			Column Attachme	ent		
Туре	Block Name	Туре	Block Name			
Condenser	Condenser 1	Reboiler	K-100			
			Block : Scalar Da	ta		
Number of Stages	6*		Column Type	Equilibrium		
Flash Type	VLE*		Enthalpy Model	Composition-Dependent*		
Efficiency Phase	Light Liquid		Maximum Initial Iterations	50		
Use Last Solution	VERDADERO		Inner Loop model	Boston-Sullivan Nonideal*		
Column Add-ons	Partial Condenser w/Reboiler*		Phase Threshold	0.500000	%	
Degrees of Freedom	0		Bottoms Head	0	psi	

Heat Exchanger Report XCHG-100						
Client Name:				Job:		
Location:				Modified:	12:19 p.m., 20/09/2015	
Flowsheet:	Gas Processing			Status:	Solved 05:10 p.m., 20/09/2015	
			Stream Connections			
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block	
1	Inlet	VLVE-100	4	Outlet	Demethanizer	
Q-3	Energy					
Block : Scalar Data						
Pressure Drop	2*	psi	Heat Release Curve Type	Plug Flow		
Temperature Change	-104.196	°F	Heat Release Curve Increments	5		
Heat Duty	-115158	Btu/h	1			

Tabla 46. Resultados intercambiador de calor

Anexo F: Cálculos asociados a las torres de absorción y destilación

Torre de absorción sistema de deshidratación

Tabla 47. Especificaciones de la corriente de entrada a la torre de absorción

Parámetros	Vapor de agua	Glicol
Caudal Molar (lbmol/h)	0,3	1,00345
Densidad (lb/ft3)	0,148283	68,9
Peso Molecular (lb/lbmol)	43,45	138,856
% Volumen	1,69337	98,63

1. Se calcula Y_{NP} de acuerdo a la siguiente ecuación

2.
$$y_{NP} = \frac{y_{NP+1}}{1 - y_{NP+1}}$$
 Ec.23

Donde *y*_{NP+1}=0.0169337

- 3. Se calcula el Y₁ de la siguiente ecuación %*Absorción* = $1 - \frac{Y_1}{Y_{NP}} = 0.78$ Ec.24 $y_1 = 0.003789586$
- 4. Se calcula X_{NP}

$$\frac{L_s}{G_s} = \frac{y_{NP+1}-y_1}{x_{NP+1}-x_0} \text{ Ec.25}$$

$$L_S = L_0 (1 - X_0) \text{ Ec.26}$$

 $L_S = 1.00345$ lbmol/h

 $G_{S} = G_{NP} (1 - Y_{NP+1}) \text{ Ec.} 27$

 $G_S = 0.7$ lbmol/h

 $X_{NP} = \frac{G_S}{L_S} (y_{NP+1} - Y_1) + X_0$) Ec.28

 $X_{NP} = 0.009169$

5. Calculo de platos teóricos

$$X_n = \frac{Yn}{(m-1)*Y_n + m} \operatorname{Ec.29}$$

$$Y_{n+1} = \frac{L_S}{G_S} (X_n - X_0) + Y_1$$
 Ec.30

6. Curva de Equilibrio

Tabla 48. Datos curva de equilibrio

MOLEFRAC	TOTAL		
WATER	PRES		
	psia		
0	0,00170784		
0,025	0,0117085		
0,05	0,0218083		
0,075	0,0320071		
0,1	0,0423047		
0,125	0,0527008		
0,15	0,0631953		
0,175	0,0737876		
0,2	0,0844773		
0,225	0,0952636		
0,25	0,1061456		
0,275	0,1171223		
0,3	0,1281923		
0,325	0,1393543		
0,35	0,1506064		
0,375	0,1619468		
0,4	0,1733733		
0,425	0,1848832		
0,45	0,1964737		
0,475	0,2081417		
0,5	0,2198836		
0,525	0,2316955		
0,55	0,2435729		

0,575	0,255511
0,6	0,2675044
0,625	0,2795472
0,65	0,2916329
0,675	0,3037543
0,7	0,3159037
0,725	0,3280725
0,75	0,3402514
0,775	0,35243
0,8	0,3645973
0,825	0,3767411
0,85	0,3888483
0,875	0,4009044
0,9	0,412894
0,925	0,4248
0,95	0,4366041
0,975	0,4482865
1	0,4598252

Figura 22. Curva de equilibrio

6. Se obtiene la ecuación de la recta:

$$Y = 0,4632X - 0,0075$$

$$X_n = \frac{Yn}{(m-1)*Y_n + m} \operatorname{Ec.31}$$

$$X_n = \frac{Y_n}{(0,4632-1)*Y_n + 0,4632}$$
Ec.32

$$Y_{n+1} = \frac{1,00345}{0.7}(X_n) + 0,0037$$
 Ec. 33

7. Se construye la tabla para la curva operativa

Tabla 49. Datos para la curva operativa

n	Yn	Xn
1	0,0037	0,00802231
2	0,01680393	0,03699842
3	0,05834119	0,1350858
4	0,19894945	0,55821338

Figura 23. Calculo de los platos teóricos

Torre de regeneración sistema de deshidratación.

Figura 24. Calculo de platos teóricos torre de regeneración.

Torre de destilación sistema Ryan Holmes

Figura 25. Calculo de platos teóricos torre de destilación