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Abstract 

Background  Cross-sectional studies are useful for the estimation of prevalence of a particular event with concerns 
in specific populations, as in the case of diseases or other public health interests. Most of these studies have been car‑
ried out with binary binomial logistic regression model which estimates OR values that could be overestimated due 
to the adjustment of the model. Thus, the selection of the best multivariate model for cross-sectional studies is a pri‑
ority to control the overestimation of the associations.

Methods  We compared the precision of the estimates of the prevalence ratio (PR) of the negative Log-binomial 
model (NLB) with Mantel–Haenszel (MH) and the regression models Cox, Log-Poisson, Log-binomial, and the OR 
of the binary logistic regression in population-based cross-sectional studies. The prevalence from a previous cross-sec‑
tional study carried out in Colombia about the association of mental health disorders with the consumption of psy‑
choactive substances (e.g., cocaine, marijuana, cigarette, alcohol and risk of consumption of psychoactive substances) 
were used. The precision of the point estimates of the PR was evaluated for the NLB model with robust variance 
estimates, controlled with confounding variables, and confidence interval of 95%.

Results  The NLB model adjusted with robust variance showed accuracy in the measurements of crude PRs, stand‑
ard errors of estimate and its corresponding confidence intervals (95%CI) as well as a high precision of the PR esti‑
mate and standard errors of estimate after the adjustment of the model by grouped age compared with the MH PR 
estimate.

Obtained PRs and 95%CI entre NLB y MH were: cocaine consumption (2.931,IC95%: 0.723–11.889 vs. 2.913, IC95%: 
0.786–12.845), marijuana consumption (3.444, IC95%: 1.856–6.391 vs. 3.407, IC95%: 1.848, 6.281), cigarette smoking 
(2.175,IC95%: 1.493, 3.167 vs. 2.209, IC95%: 1.518–3.214), alcohol consumption (1.243,IC95%: 1.158–1.334 vs. 1.241, 
IC95%: 1.157–1.332), and risk of consumption of psychoactive substances (1.086, IC95%: 1.047–1.127 vs. 1.086, IC95%: 
1.047, 1.126). The NLB model adjusted with robust variance showed mayor precision when increasing the prevalence, 
then the other models with robust variance with respect to MH.

Conclusions  The NLB model with robust variance was shown as a powerful strategy for the estimation of PRs 
for cross-sectional population-based studies, as high precision levels were identified for point estimators, standard 
errors of estimate and its corresponding confidence intervals, after the adjustment of confounding variables. In addi‑
tion, it does not represent convergence issues for high prevalence cases (as it occur with the Log-binomial model) 
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and could be considered in cases of overdispersion and with greater precision and goodness of fit than the other 
models with robust variance, as it was shown with the data set of the cross-sectional study used in here.

Keywords  Cross-Sectional Studies, Prevalence Ratio, Logistic Models, Odds Ratio, Maximum Likelihood Estimation 
and Binomial Distribution

Background
The objective of cross-sectional population-based 
research is to estimate prevalence of diseases or other 
events of interest for the human public health such as 
mortality, rehospitalization, quality of life, psychoactive 
substances consumption, among some others, and their 
associated (exposure) factors of these events of interest. 
Cross-sectional studies at the population level are usu-
ally designed with probabilistic samples with random 
selection, inferred or representative of the study popula-
tion giving as a result unbiased, efficient, consistent, and 
sufficient estimators of prevalence and its corresponding 
95% confidence intervals, with the estimation of stand-
ard and relative standard errors as precision indicators 
of the point estimates of the prevalence of the events of 
interest [1, 2].

In addition, in the cross-sectional studies as there is a 
construction of explanatory factors of the disease or the 
event, it should be an adjustment of the confounding fac-
tors that could lead to misinterpretations of the results if 
it is not well adjusted, considering individual factors but 
also its possible interactions among the variables of the 
model [3, 4]. For cross-sectional studies, binary logistic 
regression model has been used as a common and fre-
quent strategy for the estimation of odds ratio (OR) and 
95%CI as a measurement for the association of the out-
come (disease or event) with potential explanatory vari-
ables. However, OR value overestimates the associations 
regarding to the prevalence ratios (PR = p1/p2) estimates, 
with an increased bias in the case of diseases or events 
with high prevalence [3–5].

Since 2003, Cox constant time model, Log-Poisson 
model, and Log-binomial regression model were pro-
posed for controlling the bias of the overestimation of 
OR values in the case of binary logistic regression mod-
els, giving as a result good accuracies for the estimation 
of prevalence ratios (PR), although it should be evaluated 
the mathematical assumptions to validate these models 
[3, 4]. In the Poisson model one of the assumptions is the 
equality between the expected value and the estimated 
variance, in which is frequent to obtain greater variance 
values compared with the expected values, generating 
overdispersion of the data (extra-Poisson variance) in 
the model [3]. The overdispersion of the data leads to the 
underestimation of the standard error coefficients, deriv-
ing significant associations of explanatory factors of the 

event of interest which, do not exist [6]. In the case of the 
Log-binomial regression model, it has convergence issues 
when comparing numerical covariables as well as in the 
cases of high prevalence of the diseases or events [3, 4]. 
Finally, in the Cox model it is frequent the non-fulfillment 
of the assumption of proportional risks in the population 
at a time t of the observation, which is adjusted consider-
ing a constant time for the estimation of the prevalence 
ratios in the cross-sectional studies [3, 4].

Thus, although the above-mentioned models have been 
used in the research field for the estimation of PRs in 
cross-sectional studies, there are still some issues in the 
models that could be improved. The negative Log-bino-
mial regression model (NLB) has shown high mathemati-
cal consistency in the application of longitudinal cohort 
analytical studies and has been used in cases of overdis-
persion of the Poisson model [6–10]. NLB is proposed 
in this study as a novel generalized linear model for the 
estimation of prevalence ratios (PR), as a measure of 
association and control for confounding categorical and 
numerical variables in cross-sectional population-based 
studies as a strategy for controlling the bias obtained in 
unconditional binary logistic regression models due to 
the overestimation of OR values. In this study, a compari-
son of the NLB model with the Mantel–Haenszel (MH) 
stratification method and the three current models for 
the estimation of PRs is proposed, using a previous study 
carried out in Colombia about the consumption of psy-
choactive substances and mental disorders as a precision 
and accuracy indicator for the estimates of the PR using 
the NLB model.

Methods
Study description
The data used to compare the point and interval esti-
mates of the models of the present study were taken 
from a previous cross-sectional population-based study, 
with the specific objective of estimating the prevalence of 
psychoactive substances consumption and its associated 
factors in a population of 140,000 workers in Colombia, 
in which a stratified random probability sample of 5810 
workers was selected.

The outcomes or events of interest in this study were: 
lifetime cocaine use, marijuana consumption in the last 
year, current cigarette consumption, lifetime alcohol 
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consumption risk of consumption of psychoactive sub-
stances. The association factor used in the model was 
depression measured with the Zung test and grouped 
ages were used as a confounding variable with the fol-
lowing categories: 1) under 25, 2) between 26 and 29, 
3) between 30 and 34, and 5) older than and equal to 
35 years. It was used as a numerical variable as well.

Negative Log‑binomial regression model (NLB)
For the use of the negative Log-binomial regression 
model, it is important to keep in mind that the prob-
ability distribution of the negative binomial discrete ran-
dom variable X measures the number of trials necessary 
to obtain r-successes, with independent trials and its 
parameters are r (total number of successes) and p which 
is the probability of success, therefore the probability of 
failure is q = 1-p and the negative binomial probability 
distribution is as follows (Eq. 1):

This Poisson-derived distribution, adjusted for overd-
ispersion, has an expected value different from the vari-
ance, as shown below (Eqs. 2 and 3):

In the construction of the generalized linear model 
(GLM) of the proposed negative log-binomial model, 
the three components of the GLM were taken into 
account: in the random component, the random vari-
able of the dependent variable of the negative binomial 
model (Y), with exponential family distribution is meas-
ured in counts occurring at a time t and is also used in 
continuous and dichotomous variables evaluating the 
mathematical assumptions of the model (linearity of the 
model parameters and independence of the observations 
of the study subjects), therefore it is applicable in cross-
sectional studies in the estimation of the prevalence of 
the disease or dichotomous variables of cross-sectional 
studies. The systematic components of the model which 
are the explanatory variables or associated factors Xi, 
numerical or categorical variables with their respective 
estimators (βi), standard errors and confidence intervals, 
which are used for the construction of the associative 
models of the cross-sectional studies. Finally, for the link 
function, in this case was the logarithm per se, which was 
proposed the name of "negative log-binomial" model for 
cross-sectional studies.

(1)b∗(x; r, p) =
x − 1

r − 1
prqx−r

, x = r + r + 1+ r + 2 . . . . . . . . .

(2)E(X) =
r(1− p)

p

(3)Var(X) =
r(1− p)

p2
=

1

p
E(X)

Maximum likelihood was used as the estimation 
method of the NLB and to compare iteratively reweighted 
least squares (IRLS), with Fisher scoring, Newton–Raph-
son and hybrid iterative optimization methods for con-
vergence tolerances estimations or epsilon (ε) < 0.000001 
or 1e-6 (ε > 0).

NLB model is derived from a compound Poisson dis-
tribution with fitted Gamma distribution [8], with the log 
link g(μ) = ln(μ)=Xi βi,    vi=1/α, then   Yi⁄Xi =BN(1/α,1/
(1+αμi) )as follows (Eq. 4):

In the negative log-binomial model taking as independ-
ent variable dummy Xi, with the values 0 and 1 (k = 0 
and k = 1), the incidence rate ratio (IRR) of the binomial 
model was taken as the relative risk in analytical cohort 
studies and thus as the prevalence ratio (PR) in cross-sec-
tional studies, as follows (Eqs. 5 and 6) [8–10]:

With k = 1, in cross-sectional studies, the RP estimator 
as follow:

The inherent bias of the OR versus the PR
The inherent bias of the OR versus the PR for the NLB 
model was calculated to estimate the PRs for the five out-
comes for the Colombian study.

In analytical epidemiological studies, it has been shown 
that the odds ratio (OR) calculation is an accurate esti-
mator of the relative risk (RR) for the cases in which the 
prevalence of the disease is small (p < 10%) and therefore 
for the prevalence ratio in cross-sectional studies [5–10]. 
The PR is measured as the proportion of the prevalence 
of individuals with disease exposed to a specific factor 
over the proportion of the prevalence of individuals with 
disease without exposure (PR = p1/p2). The odds ratio is 
defined as a ratio of odds (odds = prevalence/(1-preva-
lence) = p/q = p/1-p) [7] and the calculation of the OR in 
cross-sectional studies is the odds of disease in exposed 
compared to the odds of disease in unexposed [7].

In a cross-sectional study the prevalence of the disease 
are taken, in the category of exposure p1 and in the cat-
egory without exposure p2, when evaluating the associa-
tion with higher prevalence in the exposed than in the 
non-exposed (risk), it could be seen that p2 < p1 , thus 
(1− p2) > (1− p1) and in the case of protector factor, 
p1 < p2 , thus (1− p2) < (1− p1) , which is the inherent 
bias of OR versus PR, as shown in Eqs. 7 and 8  [7].

(4)lh
(

Yi
/

Xi

)

= ̂β0 + ̂β1X1 + ̂β2X2 + . . . .+ ̂βkXk

(5)IRR =
e
̂βi(x+k)

êβi(x)
= e

̂βi(x+k)−̂βix = e
̂βik = PR

(6)e
̂βi = ̂PR
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This inherent bias is controlled when the prevalence 
p1 and p2 belong to small values (p < 10%) and increases 
with higher prevalence of the disease or event of interest 
[7].

Estimator precision and confusion equations
Crude prevalence ratios (PR) and standard errors of esti-
mation were considered as the reference measures of the 
associations (2 × 2 tables) in conjunction with the Man-
tel–Haenszel (MH) stratification method to control con-
founding variables.

The precision of the PR estimates of the regression 
models was measured compared with PR MH reference 
standard, as described in equation

The indicator of the percentage of confounding effect 
between the association of depression with the outcomes 
of legal and illegal psychoactive substances consumption 
was also measured controlling for the grouped age con-
founding factor, for both crude PR of the NLB and the 
other three models, and the reference PR value of MH 
model as indicated in Eq. 10.

This equation is also used to compare the standard 
error of estimation of the models with respect to the 
standard error of MH.

The PR, standard errors of estimation and 95% confi-
dence intervals with and without robust variance adjust-
ment of the NLB model were compared with the three 
models (Cox time-constant, Log-Poisson and Log bino-
mial) and with the unconditional logistic regression 
model with and without robust variance adjusted by age, 
with both grouped and numerical variable. Estimations 
were performed in STATA 15.0 [11] and SPSS version 

(7)

OR =
p1
/

q1

p2
/

q2

=

p1
/

(1−p1)

p2
/

(1−p2)

=
p1

p2
x
(1− p2)

(1− p1)
= PRx

(1− p2)

(1− p1)

(8)
(1− p2)

(1− p1)
RepresentsinherentbiasthatORhasrespectingtoPR

(9)PrecisionofthePRofthemodels,withrespecttoPRDEMH(%) =

∣

∣PRMH − PRModel
∣

∣

PRModel
∗100

(10)
Confusionpercentage =

(

crudePR−MHPRorfromthemodel
)

MHPRorfromthemodel
∗ 100

(11)PrecisionofthestandarderroroftheRPofthemodels,withrespecttothestandarderrorofMH(%)

=

∣

∣standarderrorofestimateofMHPR−ModelerrorestandardeestimaciónofPR
∣

∣

ModelerrorestandardeestimaciónofPR
∗ 100

25.0 [12]. The BIC Bayesian criterion is also used to select 
the best model.

Results
Cross‑sectional study description
In the cross-sectional study of mental health and psy-
choactive substance consumption, a probabilistic, strati-
fied random sample with proportional allocation was 
designed in 5810 workers in Colombia. The age of the 
workers varied between 18 and 56  years, with an aver-
age of 28.2 ± 7.1  years (median = 27.0  years) and age 
groups of ≤ 25  years (41.9%), 26 to 29  years (24.0%), 30 
to 34 years (14.0%) and 35 and over (20.2%), with a pre-
dominance of male gender (93.4%), single marital status 
(48.8%), followed by married (30.0%).

In this cross-sectional study the consumption of psy-
choactive substances was measured, estimating a lifetime 
prevalence of cocaine consumption of 1.8% CI 95% (1.4% 
-2.1%), prevalence of marijuana consumption of 9.6% CI 
95%:(8.8%- 10.3%), prevalence of cigarette consumption 

of 21.3% CI 95%: (20.1%- 22.4%), lifetime prevalence of 
alcohol intake of 85.7% CI 95%:(84.8.0%- 86.6%) and risk 
of consumption of psychoactive substances of 96.1% CI 
95%: (95.6%- 96.6%).

The inherent bias of crude OR versus crude PR was 
increased the overestimation by higher prevalence of 
consumptions; for cocaine 1.2%, marijuana 7.9%, ciga-
rette 17.5%, alcohol 133.3% and risk of consumption of 
psychoactive substances 233.3%, the overestimation of 
the association of the OR versus the PR being very high 
in the last two cases due to their high prevalence. The OR 
and PR estimators of association were different in the 5 
outcomes, the overestimation of the OR being greater as 
the prevalence increases (Table 1).

Significant associations were identified between 
depressive symptoms with marijuana, cigarette, alcohol 
use and risk of consumption of psychoactive substances 
and close to significant differences with cocaine con-
sumption, in the bivariate and multivariate analysis with 
MH (Table 1 y 2).

The PR, standard errors and 95% CI of the NLB model 
with robust variance were exactly equal to the raw values 
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(Table 1). In the Cox and Poisson models with robust var-
iance, the same results as NLB were found, although in 
the binomial regression the difference was in the risk of 
consuming psychoactive substances, which did not show 
convergence.

Comparison of the estimation of the PR and its precision 
with the current models: Cox model with constant time, 
Log‑Poisson, and Log‑binomial
Comparison of the estimation of the PR and its precision 
of the Cox models with constant time, Log-Poisson, and 
Log-binomial with adjustment for confounding variables 
was included considering MH as reference. The results of 
the association of depressive symptoms with psychoac-
tive substance consumption, controlled for the confound-
ing factor of worker age, were like those obtained in the 
bivariate analysis, when controlling for age, adjusting for 
a confounding effect, the confounding effects of the mod-
els with respect to MH were similar (Table 2).

The confounding control of the association of depres-
sive symptoms with psychoactive substance use, control-
ling for age groups, was performed taking as reference 
the PR of the Mantel and Haenszel (MH) stratification 
method, comparing with the estimation of the PR of the 
three models, the differences were less than 1% in the five 
outcomes, using Eq. 9. The standard errors of estimation 
of the models showed greater precision when adjusted for 
robust variance in the three models, showing similar 95% 
confidence intervals in the five outcomes of psychoactive 
substance consumption in the three models compared to 
the 95% CIs using the MH stratification method (Table 2).

Estimation and precision of the PR with the negative 
Log‑binomial model
The estimated prevalence ratio of the association 
between depressive symptoms with the different preva-
lence of psychoactive substance consumption in the 
study with the negative log-binomial model with and 

Table 1  Prevalence rates ratio crudes and of the NLB model of the consumption of cocaine, marijuana, cigarette, alcohol risk of 
consumption of psychoactive substances associated with depression of Colombian workers

CI 95%

Estimator Standard error 
estimation

Lower limit Upper limit

Lifetime cocaine consumption prevalence (prevalence = 1.8%)
  PR Crude 3.294 0,7126 0.815 13.316

  PR Negative Log-Binomial model 3.294 0.7168 0.809 13.424

  PR Robust Negative Log-Binomial model 3.294 0.7126 0.815 13.316

  OR Crude – logistic regression binary 3.337 0.717 0.819 13.600

Marijuana consumption prevalence (prevalence = 9.6%)
  PR Crude 3.493 0,2999 1.940 6.287

  PR Negative Log-Binomial model 3.493 0.3091 1.906 6.401

  PR Robust Negative Log-Binomial model 3.493 0.2999 1.940 6.287

  OR Crude – logistic regression binary 3.771 0.309 2.057 6.913

Cigarette consumption prevalence (prevalence = 21.3%)
  PR Crude 2.593 0.1897 1.788 3.760

  PR Negative Log-Binomial model 2.593 0.2073 1.727 3.893

  PR Robust Negative Log-Binomial Model 2.593 0.1897 1.788 3.760

  OR Crude -logistic regression binary 3.045 0.208 2.025 4.579

Lifetime alcohol consumption prevalence,(prevalence = 85.7%)
  PR Crude 1.255 0,0356 1.171 1.346

  PR Negative Log-Binomial model 1.255 0.0849 1.063 1.463

  PR Robust Negative Log-Binomial model 1.255 0.0356 1.171 1.346

  OR Crude – logistic regression binary 2.940 0.121 2.319 3.729

Risk of consumption of psychoactive substances (prevalence = 96.1%)
  PR Crude 1.086 0.0180 1.048 1.125

  PR Negative Log-Binomial model 1.086 0.0769 0.934 1.263

  PR Robust Negative Log-Binomial model 1.086 0.0180 1.048 1.125

  OR Crude – logistic regression binary 3.560 0.180 2.501 5.068
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Table 2  Prevalence rates ratios and 95% confidence intervals of the consumption of cocaine, marijuana, cigarette, alcohol risk of 
consumption of psychoactive substances associated with depression adjusted for age groups of Colombian workers

CI 95%

Estimator Confusion effect 
percentage (%)
(Eq. 10)

Standard 
error 
estimation

Lower limit Upper limit Comparison of the 
standard error of the 
models with MH (Eq. 11)

BIC

Lifetime cocaine consumption prevalence
(prevalence = 1.8%)
  PR MH (age adjusted) 2.913 13.08 0.7570 0.786 12.845

  PR Negative Log-Binomial 
model

2.931 12.38 0.7185 0.717 11.985 5.358

  PR Robust Negative Log-
Binomial model

2.931 12.38 0.7144 0.723 11.889 5.963 -43,857.1

  PR Cox/Poisson model 2.928 12.50 0.7161 0.720 11.918 5.711

  PR Cox/ Poisson Robust 
model

2.928 12.50 0.7152 0.721 11.896 5.845 -43,787.03

  PR Binomial regression 2.925 12.62 0.7128 0.722 11.851 6.201

  PR Robust binomial 
regression

2.925 12.62 0.7160 0.719 11.903 5.726 -43,602.83

  OR Age adjusted – logis‑
tic regression

2.965 0.7184 0.725 12.121

  OR Age adjusted – 
Robust logistic regression

2.965 0.7198 0.723 12.155

Marijuana consumption prevalence
(prevalence = 9.6%)
  PR MH (age adjusted) 3.407 2.52 0.3121 1.848 6.281

  PR Negative Log-Binomial 
model

3.444 1.42 0.3245 1.823 6.506 3.821

  PR Robust Negative Log-
Binomial model

3.444 1.42 0.3154 1.856 6.391 1.046 -45,899.8

  PR Cox/Poisson model 3.440 1.54 0.3198 1.838 6.438 2.408

  PR Cox/ Poisson Robust 
model

3.440 1.54 0.3159 1.852 6.389 1.203 -45,541.37

  PR Binomial regression 3.435 1.69 0.3151 1.852 6.370 0.952

  PR Robust binomial 
regression

3.435 1.69 0.3164 1.847 6.387 1.359 -44,534.91

  OR Age adjusted – logis‑
tic regression

3.702 0.3246 1.959 6.995

  OR Age adjusted – 
Robust logistic regression

3.702 0.3255 1.956 7.007

Cigarette consumption prevalence
(prevalence = 21.3%)
  PR MH (age adjusted) 2.209 17.38 0.1913 1.518 3.214

  PR Negative Log-Binomial 
model

2.175 19.22 0.2091 1.443 3.276 8.513

  PR Robust Negative Log-
Binomial model

2.175 19.22 0.1919 1.493 3.167 0.313 -36,500.12

  PR Cox/Poisson model 2.197 18.02 0.1991 1.487 3.247 3.918

  Cox/Poisson Robust 
model

2.197 18.02 0.1901 1.863 3.190 0.631 -35,956.34

  Binomial regression 2.225 16.54 0.1885 1.538 3.220 1.485

  Robust binomial regres‑
sion

2.225 16.54 0.1878 1.540 3.215 1.864 -34,252.81

  OR Age adjusted – logis‑
tic regression

2.536 0.2105 1.679 3.831

  OR Age adjusted – 
Robust logistic regression

2.536 0.2127 1.671 3.848
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without robust variance adjustment were equal to the 
crude PR (Table 1).

The prevalence ratio of the association of depres-
sive symptoms controlling for confounding variable by 
grouped age with the five outcomes showed very high 
precision with respect to the MH PR, measured with the 
Eq.  10, with very small percentage of difference of the 
NLB PR respecting to MH method, being for lifetime 
cocaine consumption 0.61%, for marijuana 1.07%, for cig-
arette 1.56%, for lifetime alcohol 0.16% and Risk of con-
sumption of psychoactive substances 0%.

The standard errors of estimation of the NLB model 
showed greater precision when adjusted with robust 

variance, showing similar standard errors and 95% con-
fidence intervals for the five outcomes, compared with 
95% CIs using the MH stratification method. Using the 
Bayesian BIC indicator, the NLB showed to be the best 
model with smaller values than the other models with 
robust variance. (Fig. 1, Table 2).

The standard errors of PR estimation showed high pre-
cision in the robust Cox/Poisson and NLB models with 
respect to MH, for the 5 consumption outcomes (a small 
difference in cocaine consumption), with the robust bino-
mial model. showed very large differences in prevalence 
(85.7% and 96.1%), the standard error of estimation being 
higher in alcohol consumption and no convergence was 

Models were controlled by grouped age for all cases. Results are shown for the models of negative log-binomial, Cox regression with constant time, log-Poisson, log-
binomial compared with MH, and unconditional binary logistic regression model – OR value

Table 2  (continued)

CI 95%

Estimator Confusion effect 
percentage (%)
(Eq. 10)

Standard 
error 
estimation

Lower limit Upper limit Comparison of the 
standard error of the 
models with MH (Eq. 11)

BIC

Lifetime alcohol consumption prevalence
(prevalence = 85.7%)
  PR MH (age adjusted) 1.241 1.13 0.0361 1.157 1.332

  PR Negative Log-Binomial 
model

1.243 0.97 0.0872 1.048 1.475 58.601

  PR Robust Negative Log-
Binomial model

1.243 0.97 0.0360 1.158 1.334 0.278 -45,293.58

  Cox/ Poisson model 1.242 1.05 0.0668 1.089 1.416 45.958

  Cox/Poisson Robust 
model

1.242 1.05 0.0359 1.157 1.333 0.557 -44,885.75

  Binomial regression 1.238 1.37 0.0449 1.153 1.329 19.599

  Robust binomial regres‑
sion

1.238 1.37 0.0450 1.153 1.329 19.778 -41,961.72

  Age adjusted OR – logis‑
tic regression

2.810 0.1260 2.194 3.597

  Age adjusted OR – 
Robust logistic regression

2.810 0.1248 2.199 3.589

Risk of consumption of psychoactive substances (prevalence = 96.1%)
  PR MH (age adjusted) 1.086 0 0.0185 1.047 1.126

  PR Negative Log-Binomial 
model

1.086 0 0.0793 0.930 1.269 76.671

  PR Robust Negative Log-
Binomial model

1.086 0 0.0186 1.047 1.127 0.538 -47,709.15

  PR Cox/Poisson mode 1.086 0 0.0576 0.970 1.216 67.882

  Cox/Poisson Robust 
model

1.086 0 0.0186 1.047 1.127 0.538 -47,583.75

  PR Binomial regression No converge

  PR Robust binomial 
regression

No converge

  OR Age adjusted OR – 
logistic regression

3.462 0.1857 2.406 4.982

  OR Age adjusted – 
Robust logistic regression

3.462 0.1825 2.421 4.951
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found to calculate the risk of consumption of psychoac-
tive substances estimator (Fig. 1).

In the estimation of the prevalence ratio of the asso-
ciation of depressive symptoms with the five psychoac-
tive substance consumption outcomes, controlling for 
confounding variable by age measured with a numerical 
scale with robust variance adjustment, the estimated PR,

the standard errors of estimation and its 95% CI were 
very similar among the de Cox/Poisson and NLB and in 
the prevalence of alcohol consumption, which was high 
(85.7%), the robust log binomial model showed lower pre-
cision with a higher standard error of estimate compared 
to the other models with robust variance and in the high-
est prevalence of the 5 outcomes (96.1%), no convergence 
was found to calculate the estimators, neither when age 
was adjusted categorically, nor numerically (Tables 2 and 
3). being higher as the prevalence increases in the psycho-
active substance outcomes of the study (Table 3, Fig. 2).

Discussion
The unconditional binary logistic regression model has 
been used for the construction of the explanatory asso-
ciative models of the events of interest in cross-sectional 

studies of different epidemiological investigations [3–5]. 
However, this model estimates ORs generating overesti-
mation of the PRs, this bias being greater as the preva-
lence of the disease or event of interest increases, as was 
shown in this study in the association between depres-
sive symptoms and the five  prevalence of psychoactive 
substance consumption  and risk. The prevalence of 
psychoactive substance consumption ranged from 1.8% 
to 96.1%, showing an increment in the inherent bias in 
the association between depressive symptoms and psy-
choactive substance consumption as the prevalence of 
intake increased.

In estimated prevalence less than 10%, it is expected 
that the inherent overestimation bias of OR versus PR 
was minimal in the cases of smaller prevalence of the 
disease [6]. In this study it was shown with the preva-
lence of cocaine consumption which was 1.8%, which 
was associated with depressive symptoms, the esti-
mates were very similar between OR and PR (OR = 3. 
337, 95%CI: 0.819,13.600 vs. PR = 3.294, 95%CI: 0.815 
vs. 13.315), and when controlling for confounding fac-
tor by grouped age with the NLB model with robust 
variance and with MH (OR = 2.965, 95%CI: 0.725, 

Fig. 1  Comparison of the standard errors of estimation of the PR adjusted by age groups, between the models with robust variance and MH
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Table 3  Comparison of the PR of the models with robust variance and the logistic regression model, for the 5 outcomes, adjusting by 
numerical age

See Standard error of estimate

Model Cocaine 
consumption

Marijuana 
consumption

Cigarettes 
consumption

Alcohol 
consumption

Risk of consumption 
of psychoactive 
substances

Robust Negative Log-
Binomial regression

PR
IC 95%
See

2.789
(0.873,17.003)
0,7152

3.381
(1.890,6.836)
0.3150

2.168 (1.468,3.342)
0.1915

1.245
(1.050,1.478)
0.0361

1.087
(0.931,1.270)
0.0186

Robust Log Poisson 
– Cox

PR
IC 95%
See

2.788
(0.879,16.949)
0,7152

3.371 (1.906,6.767)
0.3156

2.186 (1.512,3.313)
0.1900

1.244 (1.094,1.422)
0.0361

1.087
(0.972,1.219)
0.0186

Robust log-binomial 
regression

PR
IC 95%
See

2.787
(0.885,16.894)
0.7152

3.361 (1.921,6.694)
0.3164

2.208
(1.563,3.287)
0.1879

1.245
(1.159,1.337)
0.0452

No converge

Unconditional 
binomial logistic 
regression

OR
IC 95%
See

2.831
(0.690,11.538)
0.719

3.624 (1.917,6.848)
0.325

2.513
(1.664,3.794)
0.210

2.830 (2.212,3.620)
0.126

3.495 (2.430,5.027)
0.185

Robust Unconditional 
binomial logistic 
regression

OR
IC 95%
See

2.965
(0.723,12.155)
0.720

3.702
(1.956,7.007)
0.326

2.536
(1.672,3.848)
0.213

2.810
(2.199,3.589)
0.125

3.462
(2.421,4.951)
0.183

Fig. 2  Comparison of the standard errors of estimation of PR adjusted for numerical age, between models with robust variance
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12.121 vs. PR = 2.931, 95%CI: 0.723, 11.889) and was 
very accurate controlling for numerical age as shown in 
Table 3.

In studies since 2003 and 2008, several explanatory 
models were proposed for the estimation of the PR and 
solved the overestimation of the OR of binary logistic 
regression models [3, 4]. Among the analyzed models, 
Cox constant time model of regression for proportional 
bias and two generalized linear models (Poisson regres-
sion and Log-binomial regression) were proposed by 
the authors using applied research examples carried out 
in STATA version 7.0 and 9.0. Thus, in order to com-
pare our proposed method of NLB, we included these 
three previous models for the estimation of PRs an 95% 
CIs with and without robust variance, as a validation for 
our results with the NLB model. In previous studies, Cox 
constant time model, Log-Poisson regression, and Log-
binomial regression were used to estimate PRs, giving the 
same results as those obtained for the crude PR and 95% 
CI in 2 × 2 tables and good accuracy in controlling for 
confounding variables when compared to PRs obtained 
with the MH stratification method [3, 4].

In this study we found concordant results with the 2003 
and 2008 studies, in the crude estimates and in the con-
trol of confounding variables with the PR and their 95% 
CIs, as well as in the respective standard errors, in which 
the joint conclusion of these studies is that Cox constant 
time model and Log-Poisson regression with robust 
variance give as a result really accurate estimates for the 
PRs and its standard errors for the estimations in cross-
sectional studies [3, 4, 13–17], whereas the Log- bino-
mial model without robust variance adjustment showed 
accurate estimates at intermediate and even small preva-
lence [17–19], as it was visualized with our results for the 
case of cocaine and marijuana consumption. However, 
it is important to highlight that for the case of the Log-
binomial model adjusted with robust variance in small 
prevalence < 10%, such as for cocaine and marijuana 
consumption, the standard errors were larger than those 
without adjustment, in contrast for what it was expected 
with the adjustment of robust variance for the three 
models, including the proposed negative log binomial 
model additionally, this model showed greater precision 
with lower estimation standard errors with respect to 
MH, than the other models with robust variance.

In the previous studies, issues related with the esti-
mations and mathematical models were identified for 
the three methods. In the Log-binomial generalized 
linear model, due to non-convergence in the outcomes 
with very high prevalence, outcomes in the estimates of 
the PR and in its standard errors for this GLM model 
are performed with the maximum likelihood estima-
tion method using iterative methods to reach estimates 

with convergence tolerances with epsilon (ε) less than 
0.000001. In our study, the log binomial model with 
robust variance estimated a very high standard error 
compared to high prevalence such as alcohol, compared 
to the Cox/Poisson and NLB models with robust vari-
ance, and without convergence to obtain the PR esti-
mators, for the risk of consumption of psychoactive 
substances, which has a high prevalence of 96.1%.Also, 
the non-convergence in the numerical confounding var-
iables was solved, controlled with the abovementioned 
estimation and optimization methods, available in the 
statistical software such as STATA version 15 and later, 
in high prevalence as in our study that found conver-
gence for the prevalence of alcohol of 85.7%, although 
this was not the case for very high prevalence, such as 
the risk of consumption of psychoactive substances of 
96.1%, which did not generate convergence to obtain 
the estimates of the PR [11].

For the overdispersion (extra-Poisson variance), the 
adjustment with robust variance proposed by Lin and 
Wei [18] was the alternative for the issues in the Poisson 
model for the cross-sectional studies as it was shown pre-
viously [3, 4]. However, even after the adjustment of the 
estimates of the Poisson model with the robust variance, 
it still shows low efficiency with a higher sampling vari-
ability than that required for the model estimators [19]. 
In our study it was observed that using the Log-Poisson 
model with robust variance it was found an adjustment in 
the accuracy of the standard errors and therefore to the 
95% CI, finding the same results as in the Cox constant 
time regression model with robust variance adjustment, 
which were very concordant with the NLB and log-bino-
mial model with robust variance for the estimation of PRs 
in prevalence that are not high, in cross-sectional studies.

The negative Log-binomial (NLB) regression model, 
which was the GLM proposed model in this study, 
showed accuracy with respect to the crude values of 
PR, standard errors and 95% CI, with the adjustment of 
robust variance for the standard errors’ estimations. In 
the case of adjustment and control of confounding vari-
able of grouped age, results showed a very high precision 
with those obtained with the MH stratification method, 
as well as for the estimations of PR, standard errors and 
95% CI with the Cox constant time model, Log-Poisson, 
and Log-binomial regression models when adjusted with 
robust variance. Very concordant results were obtained 
for the associations between depressive symptoms with 
the five psychoactive substances consumption, control-
ling for the numerical age, for the estimates obtained 
with the three available models with the adjustment for 
robust variance.

The NLB model with robust variance adjust-
ment is optimal in epidemiological cross-sectional 
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studies through surveys and in some cases with clini-
cal approaches, to estimate the prevalence of a particu-
lar disease or event of interest and its associated factors 
through the multivariate NLB model with robust vari-
ance adjustment, without bias of overestimation in the 
associations and with high accuracy for the estimates. It 
allows the construction of associative models to identify 
the groups with the highest risk of the disease or event 
of interest within a population. The use of NLB model 
could also be applied for the development of prevention 
and control programs for specific conditions, and in the 
future to decrease the prevalence of those particular con-
ditions. Also, it could impact policy makers and decision-
making for the control or follow-up of the conditions of 
interest within a population with high prevalence values.

Conclusions
The negative log-binomial generalized linear model with 
robust variance is an optimal multivariate model for the 
construction of explanatory associated factors of disease 
or binary events of interest in cross-sectional studies, gen-
erating estimates with very high precision of the prevalence 
ratio, standard errors of estimation and confidence intervals, 
when adjusting for categorical and numerical confounding 
variables. This NLB model is mathematically constructed to 
identify the variance that could not be explained by the Pois-
son model in cases of overdispersion, and thus, NLB model 
is proposed as an alternative for those cases of overdisper-
sion. Finally, the NLB model does not present convergence 
issues in the estimates of the PR and the standard errors 
of PR estimation, in large or small prevalence in cross-sec-
tional studies. NLB model is proposed as a novel alternative 
for the analyses of prevalence ratios in cross-sectional stud-
ies, independent of high or low prevalence of the disease or 
the event of concern and with greater precision than the 
other models with robust variance with respect to MH and 
with the BIC Bayesian indicator, as it was shown in the cur-
rent data set of this cross-sectional study.
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