Mostrar el registro sencillo del ítem
Transformando sistemas automáticos de almacenamiento :Un primer enfoque de mantenimiento predictivo basado en algoritmos de clasificación
dc.contributor.advisor | Paipa Galeano, Luis Alfredo | |
dc.contributor.author | Acaro Imaicela, Jonathan Andrés | |
dc.date.accessioned | 2023-05-09T14:42:13Z | |
dc.date.available | 2023-05-09T14:42:13Z | |
dc.date.issued | 2023-02-14 | |
dc.identifier.uri | http://hdl.handle.net/10818/55229 | |
dc.description | 61 páginas | es_CO |
dc.description.abstract | La cuarta revolución industrial ya es un hecho y ahora las organizaciones buscan incorporar aspectos como el manejo de Big Data, computación en nube e internet de las cosas con el objetivo de fortalecer su oferta de valor. El presente proyecto se realizó para una empresa global que elabora y comercializa maquinaria de almacenamiento automático. Busca identificar cuál es el mejor modelo de mantenimiento predictivo a los datos recolectados por sensores en las máquinas. El mantenimiento predictivo consiste en predecir cuándo es el mejor momento para realizar un mantenimiento, de tal manera que se minimice los eventos de falla y el tiempo de reparación asociado. En los últimos años, esta organización ha transformado su oferta en un producto alineado al concepto de industria 4.0 y a través del presente proyecto se pretende seguir haciéndolo. A partir de los datos capturados por los sensores de máquinas en el campo y la metodología de aprendizaje de máquinas supervisado automatizado, se obtuvieron distintos modelos de clasificación. El preprocesamiento de datos requirió agrupación de los datos en ventanas de tiempo y técnicas de balanceo de clases. Los modelos obtenidos fueron evaluados con un conjunto de datos nuevo, el cual se obtuvo en un periodo de tiempo posterior a la extracción inicial de datos para entrenamiento. Entre los modelos recomendados se encontraron bosques aleatorios, árboles extremadamente aleatorios y boosting. El puntaje f1 fue utilizado para medir el desempeño de los modelos y se alcanzó un valor máximo de 0.4 en la validación final. | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | Transformando sistemas automáticos de almacenamiento :Un primer enfoque de mantenimiento predictivo basado en algoritmos de clasificación | es_CO |
dc.type | master thesis | es_CO |
dc.identifier.local | 291661 | |
dc.identifier.local | TE12256 | |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | openAccess | es_CO |
dc.subject.armarc | Sistemas de recolección automática de datos | |
dc.subject.armarc | Mantenibilidad (Ingeniería) | |
dc.subject.armarc | Big Data | |
dc.subject.armarc | Fábricas -- Mantenimiento y reparación | |
dcterms.references | Amihai, I., Gitzel, R., Kotriwala, A. M., Pareschi, D., Subbiah, S., & Sosale, G. (2018). An industrial case study using vibration data and machine learning to predict asset health. Proceeding - 2018 20th IEEE International Conference on Business Informatics, CBI 2018, 1, 178–185. https://doi.org/10.1109/CBI.2018.00028 | |
dcterms.references | Andersen, D. L., Ashbrook, C. S. A., & Karlborg, N. B. (2020). Significance of big data analytics and the internet of things (IoT) aspects in industrial development, governance and sustainability. International Journal of Intelligent Networks, 1, 107–111. https://doi.org/10.1016/j.ijin.2020.12.003 | |
dcterms.references | Ashima, R., Haleem, A., Bahl, S., Javaid, M., Mahla, S. K., & Singh, S. (2021). Automation and manufacturing of smart materials in additive manufacturing technologies using Internet of Things towards the adoption of industry 4.0. Materials Today: Proceedings, 45, 5081–5088. https://doi.org/10.1016/j.matpr.2021.01.583 | |
dcterms.references | Awan, U., Shamim, S., Khan, Z., Zia, N. U., Shariq, S. M., & Khan, M. N. (2021). Big data analytics capability and decision-making: The role of datadriven insight on circular economy performance. Technological Forecasting and Social Change, 168. https://doi.org/10.1016/j.techfore.2021.120766 | |
dcterms.references | Ayvaz, S., & Alpay, K. (2021). Predictive maintenance system for production lines in manufacturing : A machine learning approach using IoT data in real-time. Expert Systems With Applications, 173(September 2020), 114598. https://doi.org/10.1016/j.eswa.2021.114598 | |
dcterms.references | Betti, A., Crisostomi, E., Paolinelli, G., Piazzi, A., Ruffini, F., & Tucci, M. (2021). Condition monitoring and predictive maintenance methodologies for hydropower plants equipment. Renewable Energy, 171, 246–253. https://doi.org/10.1016/j.renene.2021.02.102 | |
dcterms.references | Bowler, A. L., Pound, M. P., & Watson, N. J. (2022). A review of ultrasonic sensing and machine learning methods to monitor industrial processes. In Ultrasonics (Vol. 124). Elsevier B.V. https://doi.org/10.1016/j.ultras.2022.106776 | |
dcterms.references | Cerrada, M., Zurita, G., Cabrera, D., Sánchez, R. V., Artés, M., & Li, C. (2016). Fault diagnosis in spur gears based on genetic algorithm and random forest. Mechanical Systems and Signal Processing, 70–71, 87–103. https://doi.org/10.1016/j.ymssp.2015.08.030 | |
dcterms.references | Chawla, N. v, Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. In Journal of Artificial Intelligence Research (Vol. 16). | |
dcterms.references | Ciancio, V., Homri, L., Dantan, J. Y., & Siadat, A. (2020). Towards prediction of machine failures: Overview and first attempt on specific automotive industry application. IFAC-PapersOnLine, 53(3), 289–294. https://doi.org/10.1016/j.ifacol.2020.11.047 | |
dcterms.references | Dalzochio, J., Kunst, R., Pignaton, E., Binotto, A., Sanyal, S., Favilla, J., & Barbosa, J. (2020). Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges. Computers in Industry, 123, 103298. https://doi.org/10.1016/j.compind.2020.103298 | |
dcterms.references | Einabady, B., Baboli, A., & Ebrahimiu, M. (2019). Dynamic Predictive Maintenance in industry based on real time information: Case study automotive industries. IFAC PapersOnLine, 52(13), 1069–1074. https://doi.org/10.1016/j.ifacol.2019.11.337 | |
dcterms.references | el Morr, C., & Ali-Hassan, H. (2019). Descriptive, Predictive, and Prescriptive Analytics (pp. 31–55). https://doi.org/10.1007/978-3-030-04506-7_3 | |
dcterms.references | Erickson, B. J., & Kitamura, F. (2021). Magician’s corner: 9. performance metrics for machine learning models. In Radiology: Artificial Intelligence (Vol. 3, Issue 3). Radiological Society of North America Inc. https://doi.org/10.1148/ryai.2021200126 | |
dcterms.references | Erkoyuncu, J. A., Khan, S., Eiroa, A. L., Butler, N., Rushton, K., & Brocklebank, S. (2017). Perspectives on trading cost and availability for corrective maintenance at the equipment type level. Reliability Engineering and System Safety, 168, 53–69. https://doi.org/10.1016/j.ress.2017.05.041 | |
dcterms.references | Figueroa, R. L., Zeng-Treitler, Q., Kandula, S., & Ngo, L. H. (2012). Predicting sample size required for classification performance. BMC Medical Informatics and Decision Making, 12(1). https://doi.org/10.1186/1472-694712-8 | |
dcterms.references | Fradkov, A. L. (2020). Early history of machine learning. IFAC-PapersOnLine, 53(2), 1385–1390. https://doi.org/10.1016/j.ifacol.2020.12.1888 | |
dcterms.references | Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137–144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007 | |
dcterms.references | Gouveia, B., & Costa, O. (2022). Industry 4.0: Predicting lead conversion opportunities with machine learning in small and medium sized enterprises. Procedia Computer Science, 204, 54–64. https://doi.org/10.1016/j.procs.2022.08.007 | |
dcterms.references | Gupta, A., & Nahar, P. (2022). Classification and yield prediction in smart agriculture system using IoT. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-021-03685-w | |
dcterms.references | He, H., & Ma, Y. (2013). Imbalanced Learning: Foundations, Algorithms, and Applications (1st ed.). Wiley-IEEE Press. | |
dcterms.references | IBM. (2020). Machine Learning. https://www.ibm.com/cloud/learn/machinelearning | |
dcterms.references | Javaid, M., Abid Haleem, Pratap Singh, R., Rab, S., & Suman, R. (2021). Upgrading the manufacturing sector via applications of Industrial Internet of Things (IIoT). Sensors International, 2, 100129. https://doi.org/10.1016/j.sintl.2021.100129 | |
dcterms.references | Kardex. (2020). Remote Report 2020. | |
dcterms.references | Kardex. (2021a). Kardex Corporate Profile. Kardex. https://www.kardex.com/en/company/corporate-profile | |
dcterms.references | Kardex. (2021b). Sistemas automatizados de almacenamiento y recuperación. Kardex. https://www.kardex.com/en/load-unit/small-parts-piece-picking | |
dcterms.references | Killeen, P., Ding, B., Kiringa, I., Yeap, T., & Edi, I. (2019). IoT-based predictive predictive maintenance maintenance for fleet management. Procedia Computer Science, 151(2018), 607–613. https://doi.org/10.1016/j.procs.2019.04.184 | |
dcterms.references | Killeen, P., & Parvizimosaed, A. (2018). An AHP-Based Evaluation of RealTime Stream Processing Technologies in IoT. | |
dcterms.references | Kotsiantis, S. (2007). Supervised Machine Learning: A Review of Classification Techniques. In Informatica (Vol. 31). | |
dcterms.references | Lee, J., Ardakani, H. D., Yang, S., & Bagheri, B. (2015). Industrial Big Data Analytics and Cyber-physical Systems for Future Maintenance & Service Innovation. Procedia CIRP, 38, 3–7. https://doi.org/10.1016/j.procir.2015.08.026 | |
dcterms.references | Li, L., Lin, J., Ouyang, Y., & Luo, X. (Robert). (2022). Evaluating the impact of big data analytics usage on the decision-making quality of organizations. Technological Forecasting and Social Change, 175. https://doi.org/10.1016/j.techfore.2021.121355 | |
dcterms.references | Liu, X., Ding, Y., Tang, H., & Xiao, F. (2021). A data mining-based framework for the identification of daily electricity usage patterns and anomaly detection in building electricity consumption data. Energy and Buildings, 231. https://doi.org/10.1016/j.enbuild.2020.110601 | |
dcterms.references | Memala, W. A., Bhuvaneswari, C., Mana, S. C., Selvan, M. P., Maniraj, M., & Kishore, S. (2021). An approach to remote condition monitoring of electrical machines based on IOT. Journal of Physics: Conference Series, 1770(1). https://doi.org/10.1088/1742-6596/1770/1/012023 | |
dcterms.references | Mena, R., Viveros, P., Zio, E., & Campos, S. (2021). An optimization framework for opportunistic planning of preventive maintenance activities. Reliability Engineering and System Safety, 215. https://doi.org/10.1016/j.ress.2021.107801 | |
dcterms.references | Mohan, R., Roselyn, P., Uthra, A., Devaraj, D., & Umachandran, K. (2021). Intelligent machine learning based total productive maintenance approach for achieving zero downtime in industrial machinery. Computers and Industrial Engineering, 157(March), 107267. https://doi.org/10.1016/j.cie.2021.107267 | |
dcterms.references | Mohr, F., & Wever, M. (2021). Naive Automated Machine Learning -- A Late Baseline for AutoML. http://arxiv.org/abs/2103.10496 | |
dcterms.references | Nachiappan, R., Javadi, B., Calheiros, R. N., & Matawie, K. M. (2017). Cloud storage reliability for Big Data applications: A state of the art survey. In Journal of Network and Computer Applications (Vol. 97, pp. 35–47). Academic Press. https://doi.org/10.1016/j.jnca.2017.08.011 | |
dcterms.references | Nakajima, S. (1984). Introducción al TPM. Tecnologías de Gerencia y Producción S.A. | |
dcterms.references | Nguyen, K. T. P., & Medjaher, K. (2019). A new dynamic predictive maintenance framework using deep learning for failure prognostics. Reliability Engineering and System Safety, 188(February), 251–262. https://doi.org/10.1016/j.ress.2019.03.018 | |
dcterms.references | Parikh, Y., & Mahamuni, P. (2015). Total Productive Maintenance: Need & Framework. In International Journal of Innovative Research in Advanced Engineering (IJIRAE) (Vol. 2). www.ijirae.com | |
dcterms.references | Pfeiffer, S. (2017). The Vision of “Industrie 4.0” in the Making—a Case of Future Told, Tamed, and Traded. NanoEthics, 11(1), 107–121. https://doi.org/10.1007/s11569-016-0280-3 | |
dcterms.references | Prayogo, A. (2020). Analysis of Total Effective Equipment Performance SD5 Machine on Krosok Production Line, Primary Manufacturing Department. (Case Study: PT NT). 1(1), 0–10. http://journal.UMK.ac.id/index.php/jointech | |
dcterms.references | Ramezan, C. A., Warner, T. A., Maxwell, A. E., & Price, B. S. (2021). Effects of training set size on supervised machine-learning land-cover classification of large-area high-resolution remotely sensed data. Remote Sensing, 13(3), 1–27. https://doi.org/10.3390/rs13030368 | |
dcterms.references | Rani, S., & Sikka, G. (2012). Recent Techniques of Clustering of Time Series Data: A Survey. In International Journal of Computer Applications (Vol. 52, Issue 15). | |
dcterms.references | Roda, I., & Macchi, M. (2021). Maintenance concepts evolution: a comparative review towards Advanced Maintenance conceptualization. In Computers in Industry (Vol. 133). Elsevier B.V. https://doi.org/10.1016/j.compind.2021.103531 | |
dcterms.references | Ruiz-sarmiento, J., Monroy, J., Moreno, F., & Galindo, C. (2020). A predictive model for the maintenance of industrial machinery in the context of industry 4.0. Engineering Applications of Artificial Intelligence, 87(October 2019), 103289. https://doi.org/10.1016/j.engappai.2019.103289 | |
dcterms.references | Salah, B., Janeh, O., Bruckmann, T., & Noche, B. (2015). Improving the performance of a new storage and retrieval machine based on a parallel manipulator using FMEA analysis. IFAC-PapersOnLine, 28(3), 1658–1663. https://doi.org/10.1016/j.ifacol.2015.06.324 | |
dcterms.references | Sawalha, S., & Al-Naymat, G. (2021). Towards an efficient big data management schema for IoT. Journal of King Saud University - Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2021.09.013 | |
dcterms.references | Shankarrao Patange, G., & Bharatkumar Pandya, A. (2022). How artificial intelligence and machine learning assist in industry 4.0 for mechanical engineers. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.08.201 | |
dcterms.references | Shet, S. v., & Pereira, V. (2021). Proposed managerial competencies for Industry 4.0 – Implications for social sustainability. Technological Forecasting and Social Change, 173. https://doi.org/10.1016/j.techfore.2021.121080 | |
dcterms.references | Silvestri, L., Forcina, A., Introna, V., Santolamazza, A., & Cesarotti, V. (2020). Maintenance transformation through Industry 4.0 technologies: A systematic literature review. Computers in Industry, 123. https://doi.org/10.1016/j.compind.2020.103335 | |
dcterms.references | Sivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods. Journal of Business Research, 70, 263–286. https://doi.org/10.1016/j.jbusres.2016.08.001 | |
dcterms.references | Smith, R., & Mobley, R. K. (2008a). MTBF User Guide: Measuring Mean Time between Failures. Rules of Thumb for Maintenance and Reliability Engineers, 283–284. https://doi.org/10.1016/B978-075067862-9.50018-6 | |
dcterms.references | Smith, R., & Mobley, R. K. (2008b). Total Productive Maintenance. Rules of Thumb for Maintenance and Reliability Engineers, 107–120. https://doi.org/10.1016/B978-075067862-9.50008-3 | |
dcterms.references | Tay, S. I., Alipal, J., & Lee, T. C. (2021). Industry 4.0: Current practice and challenges in Malaysian manufacturing firms. Technology in Society, 67. https://doi.org/10.1016/j.techsoc.2021.101749 | |
dcterms.references | Tinga, T., & Loendersloot, R. (2019). Physical model-based prognostics and health monitoring to enable predictive maintenance. In Predictive Maintenance in Dynamic Systems: Advanced Methods, Decision Support Tools and Real-World Applications (pp. 313–353). Springer International Publishing. https://doi.org/10.1007/978-3-030-05645-2_11 | |
dcterms.references | Tornede, T., Tornede, A., Wever, M., Mohr, F., & Hüllermeier, E. (2020). AutoML for Predictive Maintenance: One Tool to RUL Them All. Communications in Computer and Information Science, 1325, 106–118. https://doi.org/10.1007/978-3-030-66770-2_8 | |
dcterms.references | Tortorella, G. L., Fogliatto, F. S., Cauchick-Miguel, P. A., Kurnia, S., & Jurburg, D. (2021). Integration of Industry 4.0 technologies into Total Productive Maintenance practices. International Journal of Production Economics, 240. https://doi.org/10.1016/j.ijpe.2021.108224 | |
dcterms.references | Xu, X., Lu, Y., Vogel-Heuser, B., & Wang, L. (2021). Industry 4.0 and Industry 5.0—Inception, conception and perception. Journal of Manufacturing Systems, 61, 530–535. https://doi.org/10.1016/j.jmsy.2021.10.006 | |
dcterms.references | Yan, H. C., Zhou, J. H., & Pang, C. K. (2016). Machinery degradation inspection and maintenance using a cost-optimal non-fixed periodic strategy. IEEE Transactions on Instrumentation and Measurement, 65(9), 2067–2077. https://doi.org/10.1109/TIM.2016.2563998 | |
dcterms.references | Zaki, M. J., & Meira, W. Jr. (2020). Data Mining and Machine Learning: Fundamental Concepts and Algorithms (Second Edition). Cambridge Univeristy Press. | |
dcterms.references | Zhang, J. Z., Srivastava, P. R., Sharma, D., & Eachempati, P. (2021). Big data analytics and machine learning: A retrospective overview and bibliometric analysis. In Expert Systems with Applications (Vol. 184). Elsevier Ltd. https://doi.org/10.1016/j.eswa.2021.115561 | |
dcterms.references | Zonta, T., André da Costa, C., da Rosa Righi, R., José de Lima, M., Silveira da Trindade, E., & Pyng Li, G. (2020). Predictive maintenance in the Industry 4.0: A systematic literature review. Computers & Industrial Engineering, 150(October), 106889. https://doi.org/10.1016/j.cie.2020.106889 | |
thesis.degree.discipline | Facultad de Ingeniería | es_CO |
thesis.degree.level | Maestría en Analítica Aplicada | es_CO |
thesis.degree.name | Magíster en Analítica Aplicada | es_CO |