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Chapter 1

Introduction

According to the World Health Organization (WHO): "A health system includes
all organizations, institutions, resources and people whose primary purpose is
to improve health" [Organization 2010]. It has been shown that health sys-
tems are complex since they meet the following characteristics [Lipsitz 2012],
[Kannampallil 2011]:

• Non-linearity since the results of any disturbance are not predictable

• Permanent changes because their environment changes constantly

• Interconnections that are presented between the di�erent actors involved

• Feedback on the information that returns in some way to the system

• Uncertainties that can not be controlled by the health system

• Relationship with time since short and long term results can be di�erentiating
factors

Therefore health systems not only are related with the main activities in the
provision of services but also all those secondary or support activities that lead to
the achievement of the objectives, one of them is the supplying of medicines. As one
of the main objectives of healthcare systems is to guarantee the access to medicines
as a human right [Hogerzeil 2006], multiple actors (such as suppliers, manufactur-
ers, warehouses, distribution centers and providers) are involved in the movement of
multiple products through multiple echelons which constitute a supply chain, specif-
ically the pharmaceutical supply chain that has a high level of complexity because of
the dynamics nature of relationship between the members as well as the uncertainty
presented in di�erent levels of decisions [Ahmadi 2018].

The main objective of the pharmaceutical supply chain is to produce medicines
and create the transportation plan to distribute them [Xie 2012], this movement of
medicines involves several actors as: primary manufacturers, secondary manufac-
turers, distribution centers and wholesalers, retailers and pharmacies and hospitals
where each one of these actors have its own speci�cations, goals, obligations and
priorities. Di�erent challenging requirements made that the pharmaceutical supply
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chain has a high level of uncertainty. Some of these elements can be summarized as
follows [Singh 2016], [Zahiri 2018]:

• Product discovery

• Participation of di�erent stakeholders

• Perishability of medicines

• Regulatory contexts and healthcare reforms

• High variability of demand

• Quality standards

• High level of costs

Supply chain management costs account for 25% to 30% of total costs in
hospital expenses [Gebicki 2014]. Additionally, the costs associated with moving
and handling medicines can account for 35% to 40% of the total logistics costs
[McKone-Sweet 2005]. The pharmaceutical industry is one of the most challenging
industries in the world, and it is estimated that medicines account for approximately
10% to 30% (sometimes as high as 60%) of global health spending [Xu 2018]. Given
the inherent di�erences between medicines and traditional industrial products, com-
pared to the analysis of traditional supply chains, the analysis of pharmaceutical
supply chains requires special considerations. For example, some medicines and
surgical supplies must be available for use at all times [James Little 2008], and
medicines have strict regulatory requirements related to the length of manufactur-
ing time, distribution, product shelf life, and the reimbursement values that can be
obtained by the government or the insurer [Almarsdóttir 2005].

In some countries, health expenses can range from 7% to 10% of the total gross
domestic product, and the pharmaceutical costs take up a large portion of this total,
reaching approximately 10% [Priyan 2014]. According to World Health Organiza-
tion (WHO) the supply of medicines is a distribution and dispensation system to
the hospitalized patient. In this system medicines are prepared in pharmaceutical
services in order to guarantee the quantities correspond to the required dose in a
single administration and it is labeled with the name of the patient for being ad-
ministrated without any subsequent preparation. Hospitals and clinics face several
problems, such as the high and variable prices of medicines, physical and monetary
constraints and the medicines' expiration due to their perishability. The managers
of hospitals have given importance to this context in order to optimize pharmaceu-
tical supply chain decisions, such as supplier selection, expiration dates, quantities,
and supply system performance indicators [Dua 2019].
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In this way, and taking into account the previous challenges, one important
objective of managing a pharmaceutical supply chain is to reduce the healthcare
costs without sacri�cing patients service, meaning that medicines are administrated
to the right patient in the right quantity in the right time and in the right condition
[Uthayakumar 2013].

Given this a well managed supply chain is considered as a key for getting a
competitive advantage in hospitals and in every industry, it is also important to use
e�ciently the information to synchronize all the activities of the echelons and oper-
ations in the supply chain. The pharmaceutical supply chain can be categorized as a
unique because it has big di�erences with the traditional supply chains because the
tight regulations, reimbursement values, prices regulated by governmental agencies,
primary and secondary medicines or substitutes, di�culty to predict the life cycle
of a medicine, impossibility to back-order a demand, among others.

In addition to these characteristics which make it di�erent from other supply
chains, the pharmaceutical supply chain deals also with uncertainty; for example,
the demand of each medicine is uncertain and can be in�uenced by seasonal changes.
Moreover, due to the regulatory conditions, the costs and reimbursement values can
be uncertain.

Additionally the increase of the costs of services in the health sector and the
welfare of patients, are two important factors to consider in the achievement of the
e�ciency in the pharmaceutical supply chain [Dua 2019]. A signi�cant part of total
costs in the health sector corresponds to the handling and supply of medicines that
are used to meet the needs of patients. The optimization of pharmaceutical supply
chain is relevant not only for its impact on the cost structure of health systems, but
also on the e�ectiveness and e�ciency of the service provided to the patient.

For this reason this thesis is focused on the study of Pharmaceutical Supply
Chain Management making emphasis in one of the echelons: the hospitals, in order
to optimize the supply of medicines to patients in hospitals to improve the e�ciency
and service level provided to the patient and improve cost management under reg-
ulatory conditions and uncertainty. In this way operations research and simulation
models becomes important tools for modeling, analyzing and optimizing decisions
in the chain, speci�cally optimization under uncertainty models, simulation and
machine learning models.
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Context of the study

Some chapters of this thesis take as study case an university hospital that works
under the regulation of the Colombian state. In Colombia, the healthcare system
is part of the social security regulated by the government and speci�cally by the
Ministry of Health and Social Protection and the Ministry of Labor. The system is
composed by three entities:

• The Government: its main function is to regulate, coordinate an control the
di�erent agencies and enterprises that belongs to healthcare sector, its rep-
resentation in the health system is through the ministry of health and social
welfare.

• Social and health insurers: are entities that provide health insurance coverage
to the population, acting as intermediaries and managers of the resources pro-
vided by the state de�ned as Capitation Payment Unit (UPC in Spanish). In
this level the health promoting entities (EPS in Spanish) and the occupational
risk managers (ARL in Spanish) are presented.

• Healthcare providers: the institutions providers of health (IPS in Spanish),
containing the hospitals, clinics, laboratories, independent health profession-
als (doctors, nurses and others), ambulances, among others. They directly
provide the service to the users or patients and provide all the necessary
resources for the recovery of health and the prevention of diseases.

The health services are divided into POS and non POS (Obligatory Health Plan
and Non Obligatory Health Plan). The POS contains a basic set of services for
healthcare attention which an user in the national health system can access without
an additionally payment. Its main purpose is the protection of health, the prevention
and cure of diseases and the supply of the medicines to patients. POS is divided into
contributory scheme and subsidized regime, depending on the payment capacity of
the patient but the basic services are covered in both models. Additionally, there
is a list of medicines and medical procedures that belongs to the non POS program
and they are not included in the POS.

Finally, there is a solidarity fund named FOSYGA (in Spanish fondo de solidari-
dad y garantía), that manages the resources collected to invest in health programs
and manages the resources for the reimbursement policies of medical treatments
and/or medicines used in hospitals. This fund works through several sub-accounts
in which monthly contributions are distributed.
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The Colombian health system is presented in Figure 1.1.

Figure 1.1: Colombian health system [QUARTERLY 2017]

Objectives

Based on the challenges and context presented above, the main objective of this
thesis is to develop models to describe and optimize the pharmaceutical supply chain,
making emphasis in the hospital's echelon, considering uncertainty and regulatory
conditions.

To support this objective, the following secondary objectives has been de�ned:

• Characterize the pharmaceutical supply chain by the description of the in-
teraction of the di�erent echelons and their sources of uncertainty and the
operational conditions.

• Develop mathematical models to optimize the pharmaceutical supply chain,
making particular emphasis on the hospitalary echelon, taking into account
constraints of regulatory conditions and the uncertainty associated.
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• Develop models to estimate the pharmaceutical expenditure associated with
chronic diseases.

• Develop models to estimate the demand of medicines taking into account
factors related to seasonal epidemics.

Structure of the thesis

This thesis is organized in 7 di�erent chapters. In Chapter 2 a systematic literature
review is presented. The review is focused on quantitative methods for pharmaceu-
tical supply chain focused on three categories of classi�cation proposed: (i) network
design, (ii) inventory models and (iii) optimization of a pharmaceutical supply chain.
A taxonomy for each category is presented describing the main results obtained by
the review. Finally, the main contributions of this thesis related to the literature is
presented.

Chapter 3 presents a characterization and a conceptual modeling framework of
the pharmaceutical supply chain dynamics by using causal loop diagrams. Based
on this characterization, a simulation model based on system dynamics was build
to estimate the cost of managing medicines in hospitals. Five di�erent medicines
are used to test the simulation model and contrast with the reimbursement value
regulated by governmental policies to determine gaining or losses for the hospital.
Finally, a sensitive analysis are presented. With the model developed decision mak-
ers in both sides (hospitals and government) can support the process of decision
making by studying the interaction between the uncertainty factors and variables
that a�ect the �nal cost of medicines.

Chapter 3 shows that the �nal cost of supply medicines to patients is not
static and it is a�ected by di�erent dynamics and factors related to the amount of
expired medicines, adjustment costs, logistic costs, emergency purchases and short-
ages. Based on this 4 presents an application of simulation-optimization approach
where the stochastic counterpart or sample path method is used for optimizing tac-
tical and operative decisions in the pharmaceutical supply chain. This approach
focuses on the pharmacy-hospital echelon, and it takes into account random ele-
ments related to demand, costs and the lead times of medicines. Based on this ap-
proach, two mixed integer programming (MIP) models are formulated, these models
correspond to the stochastic counterpart approximating problems. The �rst model
considers expiration dates, perishability and other important elements which are re-
lated with legal regulations as the service level required, aged-based inventory levels,
unit-doses preparation and emergency purchases. The optimal policy support deci-
sions related to the replenishment, supplier selection and the inventory management
of medicines. The results of this model have been evaluated over real data and simu-
lated scenarios. The second model is a bi-objective optimization model solved with
the epsilon-constraint method. This model determines the maximum acceptable
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expiration date, thereby minimizing the total amount of expired medicines.

The medicines' replenishment decisions associated to the models presented in
Chapter 4 can be considered as operative or tactical. However in the management
of medicines there are also strategic decisions, in this sense Chapter 5 presents
models to optimize the process related to unit-doses and prescriptions management
in a network of hospitals where also the location-allocation of pharmacy robots
decisions are evaluated. Two mathematical models are presented, the �rst one a
deterministic model that considers the real operational constraints of the process of
preparing and distributing prescriptions and unit-doses prescriptions. The second
one based a stochastic model in which the uncertainty of demand of medicines and
the multi-source resilience strategy are considered to avoid the risk of centralized
distribution processes in a very sensitive network managing the demand of medicines
and prescriptions. The uncertainty of the demand of medicine is included by using
the p-robustness approach that combines the minimization of the expected cost and
the minimization of the worst case or regret.

One of the critical issues in organizations is the �nancial and budget planning,
Chapters 3, 4 and 5 show the impact of managing medicines in the budget of hos-
pitals. For this reason the estimation of the expenditure of medicines could support
the planning process in hospitals. For this reason in Chapter 6 di�erent models
based on machine learning techniques are presented to estimate the pharmaceutical
expenditure associated to a chronic disease (diabetes). Di�erent models are tested
in two di�erent stages. In the �rst stage �ve di�erent machine learning models were
tested: generalized linear model, deep learning, random forest, gradient boosted
trees and support vector machines. The �rst results showed that the predicted val-
ues have high variability for all the models tested. Therefore, the machine learning
models were combined with additional techniques: (i) feature selection, (ii) boosting
and (iii) optimized support vector machine. The results showed a reduction in the
variability and improvements in the performance indicators. The second stage con-
sists in the addition of two new variables to the data base: the Charlson index and
the number of comorbidities, these variables were calculated based on the condition
of each patient of the data base. With this new information the same models tested
in the �rst stage are tested in the second stage in order to analyze the impact of
the comorbidity in the performance of the machine learning models to estimate the
pharmaceutical expenditure.

Another element that support the planning process in hospitals corresponds to
the estimation of the medicines' demand, in this sense in Chapter 7 forecasting
models based on machine learning techniques are presented to estimate the con-
sumption of medicines within hospitals in seasonal epidemics. Two di�erent models
are applied: (i) Support Vector Machines and (ii) Neural Networks by using the
data related with the demand of medicines and the seasonal epidemics of public
databases in Colombia. Once the models are built and tested, di�erent performance
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measures are used to evaluate the statistical performance of both models.

Finally, the conclusions and some future works are included.

In Figure 1.2 the structure of the thesis are summarized, using the strategic,
tactical and operational views of the logistics planning process.

Figure 1.2: Structure of the thesis - logistics planning process
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The aim of this chapter is to identify and provide a structured overview of quanti-
tative models in the pharmaceutical supply chain, a subject not exhaustively studied
in the previous reviews on healthcare logistics related mostly to quantitative models
in healthcare or logistics studies in hospitals. The models are classi�ed into three
categories: network design, inventory models, and optimization of a pharmaceutical
supply chain. A taxonomy for each category is shown describing the principal fea-
tures of each echelon included in the review. Finally, the main contribution of this
thesis with respect to the literature are presented.

2.1 Introduction

One of the objectives of a healthcare system is to guarantee access to medicines
as a basic human right [Ahmadiani 2016]. The pharmaceutical supply chain must
provide the correct medicines in an adequate condition, to the right customer, at
the right time and place and at a minimum cost [Rankin 1999]. The high level
of complexity in the healthcare sector is represented in the interactions between
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the various echelons in the chain, including vendors, manufacturers, distributors,
wholesalers and providers [Burns 2002][Chung 2016].

A typical con�guration of a pharmaceutical supply chain includes a group of
manufacturers which can be divided into �ve categories: multinational, generic man-
ufacturers, local companies, contract manufacturers and biotechnological companies
[Sousa 2011]. Also included are a group of purchasers, including wholesalers and
distributors, and a group of providers including hospitals, clinics and pharmacies
[Burns 2002]. The activities of a pharmaceutical supply chain involve the �ow and
transformation of medicines from raw materials through to the end users; in addi-
tion, the associated information �ows through the relationships in the supply chain
to achieve a sustainable competitive advantage [Hand�eld 1999]. An illustrative ex-
ample of a typical con�guration of the pharmaceutical supply chain is presented in
Figure 2.1.

Figure 2.1: Typical con�guration of a pharmaceutical supply chain, adapted from
[Sousa 2011]

In addition to the contribution of health services, the pharmaceutical supply
chain is an important contributor to the healthcare system [Narayana 2014]. The
pharmaceutical industry is one of the most challenging industries in the world, since
it is estimated that medicines consume about 20% to 30% of global health spending
[Organization 2010]. However, pharmaceutical supply chain management is more
di�cult than typical applications within industrial companies, since medicines and
surgical supplies must be available for use at all times [James Little 2008].

It has been shown that the appropriate management of medicines and pharma-
ceutical products is directly related to the ability of a country to address public
health concerns; it has also been identi�ed that the management of pharmaceuti-
cal supplies is one of the most important managerial issues in healthcare industries
[Aptel 2001].
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According to [Uthayakumar 2013], due to the complexity and the importance
of the pharmaceutical supply chain, anything less than a service level of 100% is
unacceptable, since this has a direct impact on public health. For this reason, one
acceptable solution which can be adopted by a pharmaceutical supply chain is to
carry a huge amount of inventory in order to ensure a �ll rate close to 100% , however,
if a pharmaceutical company adopts this level of inventory, this increases the total
costs assumed by the organization; it also represents a challenge since most of the
medicines and products are perishable. It has been estimated that in supermarkets
and medicines stores the cost of expiration is over 500 million dollars per year
[Karaesmen 2011]. In addition to the perishability of medicines, pharmaceutical
supply chains deal with the problems of demand uncertainty, limitations of space,
legal regulations and patient safety.

2.2 Previous reviews related to pharmaceutical supply

chain management

[Laínez 2012] describe real mathematical applications which have immediate or po-
tential relevance to the pharmaceutical industry. The article is divided into the
three key phases in the lifecycle of an innovative drug product: product develop-
ment, capacity planning and supply chain management.

A study of the di�erent areas of pharmaceutical supply chain management was
completed by [Kwon I Kim 2016]. This considers strategic areas in which the sup-
ply chain must achieve e�ciency in terms of costs, such as supplier relationship
management, logistics operational tools and process improvement.

Another review has been carried out by [Narayana 2012] involving research on
management issues in the pharmaceutical industry, and this study uses a classi�ca-
tion in terms of geographical zones, research methodologies and managerial issues.
The study is not dedicated to �nding quantitative models in the pharmaceutical
supply chains except for the identi�cation of emerging issues for healthcare practi-
tioners.

A further study [Privett 2014] identi�es the 10 main global health supply chain
challenges. The challenges are found to be lack of coordination; inventory manage-
ment; absent demand information; human resource dependency; order management;
shortage avoidance; expiration; warehouse management; temperature control; and
shipment visibility. Another point of view is presented by [Alverson 2003] in which
the main challenges faced by pharmacies are divided into a lack of inventory con-
trol; excess inventory levels; frequent stock outages and costly emergency deliveries;
increased health system labor requirements; work�ow interruptions and expensive



14

Chapter 2. Structured review of quantitative models of the

pharmaceutical supply chain

work; and missed contract compliance.

[Shah 2004] draws on the literature to present the most important issues in sup-
ply chain design and operation: primary and secondary manufacturing, operational
issues such us demand and inventory management and strategic and design issues.

A recent review of material logistics in hospitals is presented by
[Volland J., Fugener A., Schoenfelder J., Brunner J. 2017]. In this review, the logis-
tical activities of hospitals are studied and several opportunities for future research
are identi�ed and classi�ed into supply and procurement, inventory management,
distribution and scheduling and holistic supply chain management.

[Settanni 2017] develop a review of pharmaceutical supply chain from the point
of view of operational research models. This review make emphasis in the design,
formulation and solution of mathematical models in the pharmaceutical supply chain
sector determining which type of recon�gurations can be done by implementing
technology interventions in medicine manufacturing.

In conclusion, there are reviews that have developed di�erent approaches to
typify and characterize logistics problems in hospitals and medicines supply chains
as material logistics in hospitals, supply chain design an operations in hospitals
or challenges in global health supply chain. Nevertheless the review presented in
this chapter is focused on the quantitative models in the pharmaceutical supply
chain, a subject not studied in depth in the previous reviews on healthcare logistics.
Additionally, in this chapter is presented a new taxonomy based on the actors of
the pharmaceutical supply chain.

2.3 Publications selection process

2.3.1 Framework for literature classi�cation

As the main objective of this review is focused on quantitative models on pharma-
ceutical supply chain, the triangle of logistic strategy proposed by [Ballou 1997] has
been used as the framework for literature classi�cation. Considering this triangle
of logistic strategy, three major research topics within the literature for the quan-
titative models in the pharmaceutical supply chain are proposed: (1) design of the
pharmaceutical supply chain network; (2) hospital inventories; and (3) optimization
of pharmaceutical supply chain networks. The literature is thematically classi�ed
using this framework.

Category (1) comprises the activities involved in the design of a supply chain
network in the pharmaceutical sector; this includes the selection of a manufacturer's
points, and the capacity of production plants, warehouses and distribution points.
Category (2) takes into account decisions related to the inventory of medicines in
hospitals and pharmacies. Finally, in category (3), models related to the optimiza-
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tion of a pharmaceutical supply chain are presented. The main di�erence between
topics (1) and (2) is that the �rst topic is related to the strategic decisions, while
the second topic is related to the operational decisions for a distribution network.

2.3.2 Identi�cation of publications

In order to identify the relevant literature, di�erent keywords were used to identify
the principal articles. The keywords used for the �rst topic were �pharmaceutical
supply chain network design�, �pharmaceutical supply chain design� and �pharma-
ceutical multi-site planning�. For the second topic, the keywords used were �hospital
inventories�, �inventory hospitals�, �pharmaceutical inventories�, �medicine invento-
ries� and �optimization inventory hospitals�: Finally, the keywords used for the third
topic were �pharmaceutical supply chain optimization�; �optimization pharmaceu-
tics� and �medicine optimization supply chain network�.

The review was carried out using the following databases with English-language
published papers: Informs Journals, Proquest, Sciencedirect, Springerlink, Taylor
and Francis Group, Wiley Online Library, Emerald and IEEExplore. The search
process included research articles published between 1984 and 2020.

The selection criteria of this review fall into two categories: First, papers that
consider quantitative models for any echelon of the pharmaceutical supply chain
presented in Figure 2.1 and second any type of paper or research focused on ap-
plications to pharmaceutical supply chain or the optimization of any stage of the
logistics of medicines.

In this way the inclusion criteria have the following characteristics: (i) original
research developed that met any �eld of the taxonomy proposed in this research, (ii)
paper written in English presented before in the range between 1984 to 2020, (iii)
research papers studying quantitative models and quantitative applications in the
pharmaceutical supply chain, (iv) papers listed in one of the databases mentioned
before. The exclusion criteria have the following characteristics: (i) it was not listed
in the databases of quantitative methods or models or applications of quantitative
models in healthcare or supply chain, (ii) qualitative studies in pharmaceutical sup-
ply chain management, (iii) case studies in pharmaceutical sector (iv) quantitative
models in supply chain that does not include any echelon in the chain or does not
belong to the taxonomy proposed.
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2.4 Review

2.4.1 Supply chain network design

According to [Shah 2004] the design of a supply chain network consists of the selec-
tion of the optimal logistical con�guration of a new pharmaceutical supply chain.
Decisions related to the con�guration of a supply chain networks involve the manu-
facturing stages, and can be divided into primary manufacturing for active ingredi-
ents and secondary manufacturing for formulations and packaging, storage facilities,
secondary sites, warehouses, product market areas, distribution networks and ve-
hicle routing optimization . Although there are a considerable number of studies
of the development of models for the supply chain network design, only a small
proportion of these works are related to the pharmaceutical sector.

One of the �rst studies of network design for the pharmaceutical industry was
developed by [Rotstein ' 1999]. In this paper, the authors develop an optimiza-
tion model for product development, introduction strategy, capacity strategy and
investment strategy. In order to solve the problem, the authors use a two-stage
stochastic programming method; the �rst stage includes the decisions that must be
made immediately, while the second stage includes decisions about capacities. In
the second stage, a large number of scenarios are used for the di�erent combinations
of outcomes of the independent clinical trials for di�erent drugs. A similar approx-
imation to this problem was developed by [Papageorgiou 2001]. In this paper, an
optimization-based approach is developed for selecting product development, intro-
duction strategy and capacity planning. The problem is formulated in terms of
a mixed-integer linear programming model, taking into account the global trading
structures and the particular features of manufacturing active pharmaceutical in-
gredients. Extensions of this work were presented by [Levis 2003] and [Levis 2004].
In the �rst approximation, the authors develop a multi-scenario mixed integer pro-
gramming method and present a hierarchical algorithm for reduction of the compu-
tational time. In the second approximation, they propose a systematic mathematical
programming approach for long-term multi-site capacity planning under conditions
of uncertainty. The problem is formulated as a two-stage, multi-scenario, mixed-
integer linear programming model and can determine both the product portfolio
and the capacity planning. A hierarchical algorithm is proposed for reducing the
computational time.

[Gatica 2003a] develop a model that considers a group of pharmaceutical plants
which plan to manufacture a set of various products. Products are divided into
two types: those for which demand can be considered deterministic, since they are
already in the market and forecasting can be derived reasonably well, and those
for which demand is stochastic. The authors develop a mathematical optimization
model to determine the �nal product portfolio, capacity planning, optimal pro-
duction planning and the sales and inventory planning pro�les. Due to the large
number of products and scenarios, this implementation is only useful in small in-
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stances. In order to solve this problem, the same authors develop an aggregation
approach [Gatica 2003b]. The results of the proposed approach show that a sub-
stantial improvement in computational time is achieved by using the aggregation
scheme.

Another model focusing on the capacity planning for product introduction has
been proposed [Chambers 2009]. The focus of the article is not only on demand
uncertainty but also on technical uncertainty. Speci�cally, these authors evaluate
the use of process �exibility in risky new product development in the pharmaceutical
industry. The proposed model is solved using stochastic dynamic optimization in
order to determine the optimal capacity and allocation decisions for a �exible facility.

A complete model for multi-site, multi-echelon, multi-period enterprise planning
and global network of a pharmaceutical company is developed by [Susarla 2012].
The model integrates procurement, production planning and distribution with the
e�ects of international tax di�erentials, inventory holding costs and other real-life
factors. The proposed model is evaluated over two real sets of data although this
does not include stochastic uncertainty.

For the case of the design of a pharmaceutical supply chain network under fuzzy
uncertainty, [Mousazadeh 2015] develop a bi-objective mixed integer linear program-
ming model in order to determine the opening of manufacturing and distribution
centers and the �ows over the logistic chain. The parameters involving uncertainty
which are included in this model are demand, unit manufacturing costs, unit trans-
portation and transshipment costs and safety stock levels. In order to test the
proposed model, real data is used, collected from a national organization. Finally
multi-objective decision-making techniques are used and tested on the data collected
for the problem. It can be concluded that although this is a very important topic
due to its impact on the community, applications in the pharmaceutical sector are
focused only on the manufacturing process, despite the design and con�guration of
a new pharmaceutical supply chain network requiring speci�c elements that belong
to this sector.

[Savadkoohi 2018] present a combination between location and inventory deci-
sions considering the medicines as main product. In this work authors includes
three di�erent echelons of the pharmaceutical network manufacturers and distribu-
tion centers, and decisions of inventory are also made considering the perishability
of medicines. Two di�erent parameters are considered as a source of uncertainty,
the demand and the production capacity. Given this, a possibilistic programming
approach using fuzzy optimization is used and a real case study is analyzed.

[Zahiri 2018] propose an analytical model for the pharmaceutical network design
considering products perishability, substitutability and quantity discount by using
robust possibilistic programming approach. The objective function consists in a
contrast between the minimization of the total costs and the minimization of the
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maximum unmet demand. The uncertainty considered is related to demand and
costs where a fuzzy approach is used.

[Halim 2019] propose a systematic framework for the design of sustainable phar-
maceutical network by integrating computer tools within analytic hierarchy pro-
cess. Finally, [Nasrollahi 2019] present an integrated pharmaceutical supply chain
network design with maximum expected coverage. Di�erent echelons have been
considered such as distribution centers, hospitals and manufacturers and they have
include the information of patients demand. In this article also a reliability index
is proposed for improving the service level to patients. Authors proposed a multi-
objective optimization model contrasting the total costs and service levels where a
NSGA algorithm is used and the model is tested over a real case of Iran.

In the majority of these articles, the type of demand used is deterministic and is
not used for a large variety of medicines. Since most of the articles use a deterministic
approach, the trends used in the quantitative models are classical linear programing
models and the development of heuristics. Future research in this topic may include
the con�guration of real pharmaceutical supply chains including uncertainty aspects
of the con�gurations. A summary of publications related to the quantitative models
in pharmaceutical supply chain network design and its classi�cation based on sources
of uncertainty, type of demand, number of medicines, supply chain components and
methodology is presented in Table 2.1
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Author Source of

Uncer-

tainty

Type of

Demand

Number

of

Medicines

Supply

Chain

Compo-

nents

Methodology

Rotstein et
al. (1999)

Consumption
of manu-
facturing
resources

Deterministic 8 Manufacture Stochastic
program-
ming

Papageorgiou
et al.
(2001)

Deterministic 8 Manufacture Optimization

Levis et al.
(2003)

Deterministic 7 Manufacture Optimization
Heuristic

Levis et al.
(2004)

Clinical
trials out-
comes

Deterministic 7 Manufacture Optimization
Heuristic

Gatica et
al. (2003a)

Demand Deterministic
stochastic

12 Manufacture Optimization

Gatica et
al. (2003b)

Demand Deterministic
and
stochas-
tic

12 Manufacture Heuristic

Chambers
et al.
(2009)

Demand
and techni-
cal aspects

Stochastic 5 Manufacture Stochastic
dynamic
optimiza-
tion

Susarla et
al. (2012)

Deterministic 8 Manufacture
Warehouse
Waste
treatment
plant

Optimization

Mousazadeh
et al.
(2015)

Demand
Costs

Stochastic 1 Manufacture
Distribu-
tion center

Multi-
objective
optimiza-
tion

E. Savad-
koohi et
al.(2018)

Demand
Capac-
ities of
production

Fuzzy 2 Manufacturer
Distri-
bution
Centers

Fuzzy
approximation-
optimization

Zahiri et al.
(2017)

Demand
Costs

Fuzzy 15 Manufacturers
(primary
and sec-
ondary)
Distri-
bution
Centers

Fuzzy opti-
mization

Iskandar et
al. (2019)

Deterministic 1 Manufacturers
Suppliers
Distribu-
tion centers

AHP-
Optimization

Meisam et
al. (2019)

Demand Fuzzy 1 Distribution
centers
Factory
Hospital

Genetic Al-
gorithms

Table 2.1: Publications on quantitative models of supply chain network design
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2.4.2 Pharmaceutical inventory problems

This section identi�es problems related to inventory control in pharmacies and hos-
pitals. Inventory models are one of the most studied problems in the literature,
although inventory management in the pharmaceutical supply chain has been given
little attention. [Almarsdóttir 2005] describe key factors that pharmaceuticals and
hospitals must take into account for inventory control for medicines and other kinds
of consumer products. Certain speci�c features are studied, for instance the per-
ishability of products, lead times, and constraints on capacity among others.

A �rst approach to inventory management in a hospital was developed by
[Åatir 1987]. This paper presents a stochastic and periodic review model in which
the objectives used are formulated in terms of stock-out and budget. The model
contemplates the use of three kinds of medicines, and results are analyzed with a
sensitive analysis.

[James Little 2008] develop a constraint-based model for determining stock levels
for all products at a storage location with space constraints, which takes into account
the criticality of medicines. The decision variables are related to the service level,
the frequency of delivery and the amount to order up. The objectives are the
maximization of the minimum service level and the maximization of the average
service level. The models are tested using 110 di�erent medicines. This model is an
extension of a previous article presented by [Vincent 1984].

One of the �rst extended models was proposed by [Dellaert 1996]. Their pro-
posed model is an extension of the (R, s, S) model. It is denoted as the (R, s,
c, S) model and is obtained using the EOQ model. The proposed model consid-
ers stochastic demand and is tested using a planning horizon of 100 time periods
and 1544 items. After implementation in the hospital and an evaluation, it was
determined that the total costs are reduced.

Another approximation of an inventory model has been developed by
[Kelle 2012]. These authors formulated two exact models for decisions at an op-
erational level. The �rst is an (s, S) model with space constraints; the parameters
are assumed to be random variables and shortages are allowed. The second model is
formulated in terms of optimal allocation based on ordering and holding costs, which
are considered to be a service level constraint rather than a shortage. Through the
use of this model it is demonstrated that the total cost of pharmaceutical inventory
can be reduced by up to 80%.

An approximation of inventory control via simulation was developed by
[Vila-Parrish 2008]. The model involves two stages; the �rst consists of the devel-
opment of a Markov decision process to represent medicines' demand as a function
of the patient condition, allowing the determination of the appropriate medicines'
inventory levels. The second phase consists of the use of simulation to evaluate the
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inventory policies characterized in the �rst phase. In this simulation model, the lead
times and �xed production costs are not considered. In contrast to this approxima-
tion, [Dengfeng 2015] develop a simulation model using system dynamics . In this
article, the demand is approximated as a normal distribution and a safety stock is
used. The scenarios used in the simulation show that shortages can be reduced. An-
other approximation using system dynamics was developed by [Wang 2015]. Using
the results of their simulation, these authors develop a dynamic drum-bu�er-rope
replenishment model. A Powell search algorithm is used to determine bu�er sizes
and inventory quantities. The model is tested on real data, demonstrating that the
model can �nd the optimal replenishment timing and quantity, minimizing the total
cost and with no stock-out occurrence.

[Çaklcl 2011] present an approximation to the pharmaceutical inventory models
using RFID . In this article, the authors demonstrate that continuous review is su-
perior to periodic review in terms of costs whenever accurate real-time information
is available with no additional cost. The proposed model takes into account only one
product, and the demand is modeled as a continuous stochastic process with sta-
tionary and independent increments. The lead time is assumed to be deterministic
and a constant number and shortage are backordered. While this model does not
consider the economic e�ect of the use of RFIDs, [Matthieu-P. Schapranow 2012]
develop some approximations of the real costs of the use of RFIDs in the pharma-
ceutical supply chain. While most of the objective functions consider the minimiza-
tion of total costs, [Gökçe 2016] consider the maximization of the total net pro�t.
The problem is formulated by these authors as a mixed-integer linear programming
model with a hybrid time representation. The model considers the use of the VMI
(Vendor Managed Inventory) strategy with three months of planning horizon and
15 products.

[Guerrero 2013] propose a model for a multiproduct multi-echelon process . The
demand is assumed to be stochastic, Poisson-distributed and independent between
products. The problem is formulated as a Markov chain with the objective of mini-
mizing the stock-on-hand value. The model determines both the re-order level and
the order-up-to level. A heuristic algorithm is proposed to reduce the computational
time.

A mathematical model using two forms of stochastic data has been developed by
[Rappold 2011]. This is the only article that assumes a stochastic bill of materials for
the procedures in an operating room; in addition, a stochastic demand is assumed.
The authors develop a mathematical model using stochastic uncertainty and test
this using real data.
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Two exact models for lost sales and limited storage capacity have been developed
by [Bijvank 2012]. In the capacity model, the service level is maximized subject
to a capacity constraint; in the service model, the capacity required is minimized
subject to a service level constraint. Moreover, the authors develop an heuristic for
the capacity model in which the re-order levels and order quantities are �xed.

[Maestre 2018] present an application of Model Predictive Control to a real case
of inventory management in a hospital of Spain where 10 di�erent medicines are
tested to evaluate the performance of the model. Di�erent constraints are used
such as ordering quantities, stock levels and space constraints and the purpose is to
minimize the total costs. Results of the proposed approach generates a reduction
over the total costs.

[Ahmadi 2020] develop a stochastic multi-echelon (s,S) periodic inventory control
model also considering the perishability of medicines. The problem is formulated as
stochastic mixed integer linear programming model where two di�erent purchasing
strategies are analyzed: if the depot orders fresh products and those with shortest
product life. A genetic algorithm is developed for solving the proposed model.

It is important to mention that the majority of the articles deals with instances
with a reduce number of medicines, despite the fact that in real cases, hospitals,
clinics and pharmacies work with an extremely large number of medicines.

A summary of publications related to inventory problems in pharmacies and hos-
pitals and its classi�cation based on sources of uncertainty, type of demand, number
of medicines, constraints, methodology used and objective function is presented in
table 2.2.
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Author Source of

Uncer-

tainty

Type of

Demand

Number

of

Medicines

Constraints MethodologyObjective

Satir and
Cengiz.
(1987)

Demand Stochastic 3 Budgetary
Shortage
Lead times

Stochastic
optimiza-
tion

Stock-out

Vincent et
al. (1984)

Demand Stochastic 1 Space lim-
itation De-
livery Criti-
cality

Optimization Total costs

Dellaert et
al. (1996)

Demand Stochastic 1544 Optimization Total costs

Kelle et al.
(2012)

Demand Stochastic 12 Space limi-
tation Ser-
vice level
Shortage

Optimization Total costs

Vila-
Parrish et
al. (2008)

Demand Stochastic 3 Shelf life Markov De-
cision Pro-
cess Simula-
tion

Total costs

Dengfeng et
al. (2015)

Demand Stochastic 1 Space limi-
tation

Simulation Total costs

Wang et al.
(2015)

Demand Stochastic 1 Shortage
Stock-
out Space
limitation

Simulation
Heuristic

Total costs

Çaklcl et al.
(2011)

Demand Stochastic 1 Lead times
Shortage

Stochastic
optimiza-
tion

Total costs

Gökçe et al.
(2016)

Deterministic 15 Space limi-
tation

Optimization Total net
pro�t

Guerrero et
al. (2013)

Demand
Trigger
an order
Delivery
success

Stochastic 4 Space lim-
itation
Service
level Quan-
tity ordered

Markov De-
cision Pro-
cess Heuris-
tic

Total costs

Rappold et
al. (2011)

Demand
Bill of
material

Stochastic 4 Space limi-
tation

Optimization Total costs

Bijvank et
al. (2012)

Demand Stochastic 1 Space limi-
tation Ser-
vice level

Heuristic Service
level Ca-
pacity

Little et al.
(2008)

Demand Stochastic 110 Space lim-
itation De-
livery Criti-
cality

Optimization Minimum
service level
Average
service level

Maestre et
al. (2018)

Demand Stochastic 10 Placing
orders
Stock levels
Storage
Satisfaction
of demand

Control
Theory

Minimize
costs

Masel et al.
(2019)

Demand Stochastic 1 Capacity
Expiration
quantities
Inventory
balance

Genetic Al-
gorithms

Minimize
costs

Table 2.2: Publications on quantitative models of pharmaceutical inventories
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2.4.3 Optimization of the pharmaceutical supply chain network

An online procurement system has been developed by [Kim 2005]. In this model, a
supply chain network is considered, involving a group of pharmaceutical companies,
wholesalers and hospitals. Due to an online system implementation, real-time infor-
mation is provided for optimizing the inventory control of pharmaceuticals. Through
the use of the proposed model, the total costs can be reduced and a vendor man-
agement system strategy can be adopted which involves sharing information with
wholesalers. [Baboli 2011] propose two models for centralized and decentralized
supply chains. The basic model consists of one warehouse and one retailer, and the
products are assumed to have a deterministic demand which corresponds to items
with a stable demand and high turnover rate. The centralized model is considered to
be a single organization in which the warehouse and the retailer belong to the same
organization, while in the decentralized model the warehouse and the retailer are
treated as external companies. Other works deal with the problem of optimization
of a supply chain in a centralized model, such as that proposed by [Azzi 2013]; in
this study, a system dynamic simulation model is developed using a careful analysis
which demonstrates that logistics outsourcing is often the most economical choice.
Nevertheless, the proposed model is only applicable to small instances due to the
complexity of the interactions within the chain. While this model is a mathematical
approximation, [Hassan 2006] have put forward an analysis based on the best prac-
tices for supply chain management; these authors generate eight possible scenarios
and use a multi-criteria decision-making model to evaluate these.

[Uthayakumar 2013] develop a model that integrates continuous review with
production and distribution. The model considers a set of products, variable lead
times, payment delays, constraints of space availability and customer service level.
The proposed mathematical model takes into account a random demand, a deter-
ministic expiration date, and a random lead time that is assumed to be a normal
random variable; the production rate of the medicines is also considered. The model
is formulated as a two-echelon supply chain in order to identify the optimal inventory
lot size by minimizing the integrated expected total cost. A Lagrangian relaxation
is used to solve the proposed model. The same authors develop a model which
involves a fuzzy stochastic environment [Priyan 2014]. The total cost of inventory
management is considered as a fuzzy variable in a multi-echelon, multi-product,
multi-constraint inventory based on the distance method. Another model that con-
siders stochastic uncertainty has been proposed by [Zhao 2012]. The demand is as-
sumed to be stochastic; information available for the model includes a set of prices
from the manufacturers, the production rate and the initial inventory. The model
is divided into the optimal policy for the manufacturer and that for the distribu-
tor, and proves that the solutions enhance the pro�ts in the echelons of the chain.
Finally, a heuristic to estimate the Pareto-improving fee range is proposed.
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Although in the majority of the articles the authors describe a distribution net-
work and its optimization, [Lawrence 2004] propose a model to evaluate the out-
sourcing of non-critical inventory items . The proposed model includes a comparison
of a three-echelon distribution network versus an outsourced two-echelon distribu-
tion network. The model proposed for the three-echelon distribution network is an
extension of the work of [Sinha 1991] and [Rogers 1991]. The proposed model takes
into account only a single product, which has a stochastic demand. Two heuristics
are proposed for testing the proposed model.

Although in most of the articles the authors develops models considering uncer-
tainty, [Balcázar-Camacho 2016] and [Giuseppe 2016] develop a linear programming
model for a distribution network. The model proposed considers a multi-echelon dis-
tribution system in which the objective function involves the minimization of the
total costs. Although the mathematical models proposed by these authors consider
some elements concerning the real composition of networks, the instances used for
testing the model are small and do not correspond to the size of a real life supply
chain network.

A real case of a pharmaceutical chain in India is studied by [Dutta 2007]. The
authors describe a multi-period-based decision support system for planning within
the pharmaceutical process. The model includes manufacturers and warehouses,
decisions on materials and production activities. A mathematical linear model is
proposed using seven types of medicines.

[Jetly 2012] propose a multi-agent simulation model for the pharmaceutical sup-
ply chain . The model is used to prove that the norms of a speci�c industry can be
used to represent a speci�c industry capable of tracking its evolution. The model
is tested with three kinds of medicines and includes 30 manufacturers, 60 suppliers
and 60 distributors. The lifecycle is also modeled.

A di�erent type of study was performed by [Eberlea 2014]. This study consisted
of implementing a Monte Carlo simulation to reduce the lead times of the production
processes. The main medicines involved in the simulation model are both parenteral
and injectable medicines. The results of the simulation are evaluated with a �what
if� technique to assess the e�ect of investments in resource allocation and process
improvements.

[Masoumi 2012] propose a network oligopoly model. This model uses arc multi-
pliers for supply chains using inequality theory. The model takes into account the
perishability of pharmaceuticals and the objective is to maximize the product �ows.

[Nyhuus Hansen 2015] consider the problem of supporting planning operations
before market launch in the pharmaceutical supply chain. A two-stage stochastic
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model to support the market launch preparation is developed in this study.

An algorithm for integrating decisions on inventory and purchases has been
developed by [Rego 2013]. The model estimates the number, size and composition
of purchasing groups for a set of hospitals with the objective of minimizing the
supply chain costs. The proposed algorithm is based on the variable neighborhood
search within a tabu metaheuristic search. The proposed algorithm is tested with
two items and a set of 15 providers.

A coordination problem between plants in pharmaceutical supply networks is
studied by [Grunow 2003]. These authors propose several aggregation schemes and
a novel mixed-integer linear programming model formulation based on a continuous
representation of time. A heuristic approach is developed in order to solve real-life
problem instances.

An enormous number of studies on reverse logistics can be found in the literature;
however, studies of reverse logistics within the pharmaceutical supply chain have not
yet been highly developed by researchers. Reverse logistics in the pharmaceutical
context consists of the collection of the unwanted or unused medications from phar-
macies or hospitals. The objectives of reverse logistics are diverse, and include the
minimization of fees and penalties paid to governments by industry, maximization
of unwanted products collected, maximization of individual pro�t, minimization of
collection costs, and minimization of waste, among others [Narayana 2014].

A real case of reverse �ow within the pharmaceutical industry is developed by
[Amaroa 2008]. At the planning level, an aggregation description is proposed for
the supply chain operational model. A master representation is de�ned to support
supply chain resources, and a mathematical formulation is then proposed for optimal
supply chain planning. Once the results of the supply chain planning are obtained,
the scheduling model is formulated using a mathematical model.

As described above, few works can be found on reverse logistics applied within
the pharmaceutical sector. [Weraikat 2016] propose a linear programming model
with a Lagrangian relaxation including a negotiation with 3PL (Third-Party Logis-
tics) providers. [Shih 2003] have presented a multi-criteria optimization approach
to minimize the total cost of collection system planning for medical waste; a similar
work is presented by [Weraikat 2016] in which a nonlinear mathematical program-
ming model is developed. [Xie 2012] designed a green pharmaceutical supply chain
model to reduce pharmaceutical waste. Although other studies of reverse logistics
include several other features, quantitative models are not included.
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[Sabouhi 2018] propose an integrated approach based on Data Envelopment
Analysis (DEA) combined with two-stage possibilistic stochastic programming in-
tegrating the supplier selection and quantity discount for procurement and raw
materials. Models are tested over a real life instance where also resilience analysis
are performed.

[Moslemi 2017] propose a multi-objective optimization model considering pro-
duction rates and quality and green concepts. This model uses three di�erent ob-
jective functions, the minimization of the manufacturing costs, the maximization of
the quality level of production and the minimization of the environmental e�ects
of transportation. Given that is a combinatorial optimization problem, it is solved
by using a Non-Sorting Genetic Algorithm (NSGAII) algorithm. Di�erent sizes of
instances are tested for analyzing the performance of the algorithm.

[Lin 2019] study the problem of medical supply from the point of view of pro-
cessing and distributing. The proposed mathematical model considers the e�ciency
in each one of the levels established including constraints of demand satisfaction,
capacities of warehousing and manpower. Finally an algorithm is developed and
tested over real case instances.

Most of the articles in this part of the review include uncertainty in demand,
which is modeled as a stochastic function. Nevertheless, real approximations of
pharmaceutical problems in hospital are not deeply developed in the literature.
Future research on this topic should include coordination between various medicines
and should develop powerful algorithms to handle the very large number of items.

A summary of publications related with optimization of the pharmaceutical sup-
ply chain network and its classi�cation based on sources of uncertainty, type of
demand, number of medicines, constraints used, objectives, methodology used and
supply chain components is presented in table 2.3.
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]

Table 2.3: Publications on quantitative models of optimization of the pharmaceuti-
cal supply chain
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A conclusion can be drawn that most of the articles regarding optimization of
the supply chain models take into account only a small number of medicines, thus
reducing the complexity of the interactions between the echelons and the medicines.

2.5 Contribution of the thesis in relation to the litera-

ture

In this chapter a literature review of quantitative models of the pharmaceutical
supply chain is presented based on three classi�cation categories. The taxonomy
proposed shows that 23% of the publications corresponds to network design, 27%
corresponds to inventory problems and 50% corresponds to supply chain optimiza-
tion models.

Several deterministic models are found, but the majority of publications use a
stochastic approach of modeling uncertainty in some of the echelon of the chain.
Most of the articles involve stochastic modeling, and only a few uses an alterna-
tive approximation of uncertainty, for example fuzzy logic and robust optimization,
among others. In network design 66% of the articles the demand is considered as
deterministic and 16% as stochastic and 16% of the articles used both types of
demand. Inventory models 93% of the articles the demand is considered as stochas-
tic and 7% as deterministic. In supply chain optimization 64% of the articles the
demand is considered as deterministic and 36% as stochastic.

Related to the techniques found in this literature review, for network design the
most common technique used is classic optimization with 33% of the cases, while
combination between classic optimization and heuristics was used in 17% of the
cases and stochastic optimization, heuristics, stochastic dynamic optimization and
multi-objective optimization was used each one of them with 8% of the cases, �nally
fuzzy optimization is used in 17% of the cases. On inventory models the most com-
mon technique used is classic optimization with 47% of the cases while stochastic
optimization is used in 13% of the cases, Markov decision process with simulation,
simulation, simulation with heuristic, Markov decision process with heuristic, heuris-
tics and control theory are used with 7% each one. In supply chain optimization the
most common technique used is classic optimization with 41% of the cases, heuris-
tics with 10% of the cases, simulation, lagrangian relaxation s with 7%, stochastic
optimization, metaheuristics and multi-criteria optimization are used with 7% of the
cases respectively and also inequality theory, lagrangian relaxation with optimiza-
tion and multi-criteria decision making are used 3% of the cases respectively.Finally,
judging from the number of publications in this area, pharmaceutical supply chain
is a signi�cant topic with important real-world applications; however, despite some
recent developments, there remain few works on this subject.
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Given this review, the main contributions of this thesis related to the literature
can be summarized as follows:

From the point of view of optimization of pharmaceutical systems, this review
shows that only one article includes several sources of uncertainty that a�ects the
decision making of managing medicines in hospitals (see [Priyan 2014]). For this
reason in chapter 4 an application of simulation-optimization approach based on
the stochastic counterpart or sample path method is used for optimizing tactical
and operative decisions in the pharmaceutical supply chain in hospitals taking into
account multiple sources of uncertainty associated with the information in di�erent
echelons of the chain such as patients (medicines demand) and distributors (medicine
costs and lead times). Based on this approach, two mixed integer programming
(MIP) models which correspond to the stochastic counterpart approximating prob-
lems were formulated. These models support the decision making of replenishment
of medicines by considering real characteristics of the system (expiration dates,
emergency purchases the service level required, perishability, aged-based inventory
levels and emergency purchases, multiple suppliers) and combining di�erent sources
of uncertainty.

On the other hand, from the point of view of optimization of pharmaceutical
systems, this review shows that the concept of multi-source resilience strategy in
the pharmaceutical supply chain has not been addressed. In chapter 5 two math-
ematical models are developed to optimize the process related to unit-doses and
prescriptions management and distribution in a network of hospitals where also a
location-allocation of pharmacy robots decisions are evaluated. One of these mod-
els consider the uncertainty of the demand of medicine by using the p-robustness
approach and consider the concept of resilience to avoid the risk of centralized dis-
tribution processes in a very sensitive network managing the demand of medicines
and prescriptions. This chapter contributes to the healthcare location-allocation lit-
erature by addressing a real application in the context of automation of unit-doses
and prescription preparations, including the uncertainty in demand of medicines
and resilience.

Even when the studies of quantitative models combine di�erent kinds of tech-
niques, this review shows that there is a lack of the use of combined techniques that
will allow researchers to approximate the operation of a pharmaceutical supply chain
in a realistic way. For this reason in chapter 3 is proposed a conceptual modeling
framework using causal loop diagrams to characterize the dynamics of the pharma-
ceutical supply chain and its impact in the hospital medicines management. Based
on this conceptual framework, a system dynamics simulation model was built to
have a �rst approximation of the cost of managing medicines in hospitals, including
the legal regulation. In the same sense there are some illnesses that must be treated
as special due to its complexity of treatments and the high costs that represents to
the health system, for this reason, in chapter 6 machine learning models are used
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to predict the pharmaceutical expenditure in a speci�c case of a chronic disease
(diabetes).

Finally, this review shows that in the most of the mathematical models found
in the literature treats the demand as a source of uncertainty. In this way is rec-
ognized that the correct estimation or modelization of the demand is a key factor
for optimizing the systems. For this reason in chapter 7 machine learning models
are used for predicting medicines demand in seasonal epidemics, that is considered
a high variability periods where the consumption of some medicines increases.
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This chapter presents a conceptual modeling framework using a causal loop dia-
grams to characterize the dynamics of pharmaceutical supply chain and its impact
in the hospital medicines management. Based on this conceptual framework a sys-
tem dynamics simulation model was built by using the main variables that a�ect
the medicines managing costs in hospitals including the legal regulation related to
reimbursement values, service level and unit-doses preparation. A real case of a
hospital in Colombia was studied to explore how the dynamics of the variables se-
lected a�ect the behavior of the �nal unit-dose cost of medicines. The model were
validated by using real data.

3.1 Introduction

In recent years, the medical cost per capita for medical outpatients and inpatients
has increased due to variables that are not easily manipulated by decision makers,
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such as the increase of life expectancy, the growing population, and the emergence
of new diseases, among others. According to o�cial statistics from the World Bank,
the global population is growing at a rate of 200,000 per day, and it is higher in
countries with medium and low incomes [wb2 2015a]. Another factor that increases
the demand for health services is the substantial increase in life expectancy; cur-
rently, according to the World Health Organization (WHO), the life expectancy is
73 years for a woman and 68 years for a man [wb2 2015b].

The healthcare system is composed of di�erent actors as shown in Figure 3.1.
The main actors are patients who require health services. The biological environ-
ment generates the pathologies that increase the demand for services and treatments.
On the other hand, the government creates policies for medical services, where public
and private entities such as pharmacies and hospitals are responsible for managing
the healthcare service, all framed within an economic environment. There are also
the producers that can be divided into: research and development, generic manu-
facturers, local manufacturers, contract manufacturers and biotechnology companies
[Shah 2004].

Figure 3.1: Healthcare system [V. Mantzana, M. Themistocleou 2007]

The pharmaceuticals industry, like many other industries, is a complex system
[Shah 2004], principally due to the processes, operations and organizations involved
in the discovery, development and manufacture of medicines.

Pharmacies, clinics and hospitals operate in a very regulated market. Govern-
ments and regulatory entities �x the prices for producers, distributors and hospitals,
imposing the margins for each of the players in the supply chain [Shah 2004]. While
producers can establish their own times for producing and distribution, wholesalers
and pharmacies must guarantee a service level according to the demand. The eco-
nomic crisis and monetary limitations are forcing pharmacies to change the way
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they made decisions related to purchasing, ordering more frequently and in lower
volumes, so the warehouses must work with these requirements in order to syn-
chronize the supply chain [Shah 2004]. Besides the regulations and the economic
crisis, the pharmaceutical supply chain is a�ected by medicines' perishability and
shortages [Nagurney 2013].

The system studied in this chapter consists of a market heavily regulated by
governmental policies. Medicines given to patients by hospitals are paid by the
government but a maximum refund value that hospitals can access has been estab-
lished. So, it is possible for hospitals to gain or lose money in the process of buying
medicines from companies or providers, and the whole process is related to the ad-
ministration to patients. With this speci�c system, it is interesting to answer the
following questions: What is the behavior of the �nal cost of medicines? What ac-
tors are involved in the process and how is their interaction with the system studied?
What is the variation of the real cost of administering medicines to patients?

As the system studied is complex and involves several actors, the main purpose
of this chapter is to provide an approximation to understand the pharmaceutical
system dynamics and its impact in the hospital medicine management and its costs
to identify losses or gains. The models can be used as a framework to determine the
maximum prices that the regulation agencies can pay to hospitals (reimbursements)
considering the real issues that a�ects the �nal prices.

3.2 Background

Di�erent approaches are used to determine the cost of medicines from the medicine
manufacturers to the administration to patients. Some models provide a statistical
function to estimate the price of a brand-name medicine and a generic substitute
[Ferrara 2012]. The model considers the quantity of �rms that produce the medicine
and constructs a utility function of a representative consumer with market and
product segmentation by using a sensitivity analysis in which the boundaries of
medicine consumption with ranges of prices are obtained.

[Kaiser 2014] propose a pricing regression model to infer the change
of prices due to a legal reform in Denmark, where medicine prices are
regulated by a set of reference prices. The regulation of prices has
been used in other countries and it has been evaluated in the literature
[Brekke 2011],[Brekke 2007],[Brekke 2009],[Miraldo 2009]. A similar work was de-
veloped by [Lauenroth 2017] and [Mohamed 2016], who studied pharmaceutical
pricing in Germany and in Egypt respectively. The model evaluates the e�ect of
changing the medicine prices. With this change, they show that consumers tend to
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substitute branded medicines.

In [Haji 2009] a fuzzy logic model to estimate the medicine pricing for a new
medicine using fuzzy logic is developed. Fuzzy logic is used for the representation
and acquisition of knowledge and data uncertainty. This model uses the product life
cycle to estimate di�erent factors that a�ect the medicine pricing during di�erent
stages of the life cycle.

In [Li 2014] is developed a model to study the behavior of pharmaceutical costs in
China using system dynamics. The model addresses problems related with the high
prices of medicines and pharmaceutical fees and takes into account a problem related
to the unnecessary use of expensive medicines by medical sta�. The model is based
on articles that deals the hospital's problems with system dynamics [Rauner 2002],
[Chaerul 2008], [Hassmiller Lich 2010], [Rwashana 2009], [Sirois 2008]. [Kunc 2013]
developed a system dynamics simulation model to represent the pharmaceuticals
market for chronic cardiac disease in Bulgaria. The main idea of the simulation
model is to test di�erent policies related with medicine regulation, like providing
timely access to the market, in�uencing the prescribing of generic medicines and
implementing programs for increasing the percentage of diagnosed patients, based
on the dynamics of the pharmaceuticals market for one chronic disease.

In [Abdollahiasl 2014] a system dynamics simulation model is developed. In the
study authors propose a simulation model studying 92 di�erent variables that are
associated with the medicine policies in India. Authors �rst identify the di�erent
variables associated and create a causal loop diagram and then a Forrester model is
proposed.

3.3 Methods

The pharmaceuticals supply chain process is a complex and dynamic system with
multiple non-linear relationships. For this reason, this study uses a simulation
continuous-time modeling approach [Forrester 1961]. System dynamics was selected
to develop this study because its ability to evaluate di�erent strategic policies and
integrate the system feedback and delays, as well as to evaluate the relationship
between the main variables and their impact on the behavior of the �nal price of
medicines. The main objective is twofold: (i) build a conceptual causal-loop dia-
gram that represent the entire process of the general process of managing medicines
and (ii) generate a simulation model that enable to study the behavior of the �nal
costs of medicines within hospitals. The main limitation of this work is related with
the lack of information which implies that some variables cannot be modeled.
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3.3.1 Causal loop diagrams foundations and dynamic hypothesis

System dynamics modeling requires the development of a causal loop diagram which
captures the interactions between the key components [Asish Ghosh 2015]. Based
on the factors involved in the pharmaceuticals process of the hospital, causal loop
diagrams are developed.

The causal-loop diagrams were built based on the �eldwork carried out in the
hospital and based in some studies which have identi�ed some variables that a�ect
the costs of medicines. For example [Brekke 2011] develop an econometric study
to analyze the competition between di�erent pharmaceutical companies and how
this competition a�ects the selling price of medicines. In the same way [Kunc 2013]
develop a system dynamics simulation model to study the e�ect of competition in
the chronic cardiac disease market, �nding that allowing competition in this type
of market could generate savings in the �nal cost of medicines and hence on the
public health system. [Kaiser 2014] study how governmental regulations of refer-
ence pricing systems can in�uence the �nal prices of medicines. [Abdollahiasl 2014]
identi�ed 93 di�erent variables related to the �nal cost of medicines to analyze dif-
ferent governmental policies, some of these variables are the consumption, pharmacy
inventory levels, competitions of distributors, among others.

The hospital selected for this study is divided into operational areas. The areas
analyzed in this study are: (i) the pharmaceuticals area and (ii) logistics and sup-
ply chain area. The main objective of the pharmaceuticals area is to provide the
hospital with the medicines required for patients. The pharmacy oversees receiv-
ing medicines, making records in the databases and updating inventory records for
medicines, packaging medicines as individual items (a legal requirement to guarantee
a medicine's traceability), keeping the inventory in good order, receiving the require-
ments from the clinic and dispatching in the right quantities and conditions. The
pharmacy sends the requirements for medicines to the logistics area. The logistics
area negotiates with suppliers to get discounts on the amount of medicines needed.
Once a patient is healthy, the hospital makes a request to the local government to
receive payment for the medical treatment. In Colombia, there is a regulation that
establishes the range of prices for some medicines and treatments, so hospitals are
not able to receive payments over the maximum legal price allowed.

The system dynamics model was developed in order to capture the behavior of
the �nal cost of medicines within hospitals, describing the interaction between the
main variables and parameters involved. The main idea is to map the variation of
the costs to contrast its value with the maximum reimbursement value de�ned by
governmental agencies in order to de�ne if the �nal cost of medicines can exceed or
not the maximum amount of money that the hospital will be receive by the process
of reimbursement. For this reason understanding the impact of the pharmaceutical
supply chain in the hospital is the �rst step to develop the simulation model. In
this way, a conceptual structure was developed and divided into three main sectors:
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manufacturers-distributors, demand of medicines and pharmacy.

Manufacturers and distributors causal loop diagram

Figure 3.2 shows the causal loop diagram of manufacturers and distributors of
medicines. The variables used are:

• Manufacturers and distributors: refer to the number of companies selling
medicines to pharmacies

• Competition among manufacturers and distributors: refers to the pricing
strategy for selling to pharmacies

• Medicines production: refers to the quantity of medicines produced and dis-
tributed by the manufacturers and distributors

• Medicine inventory on market: refers to the quantity available for selling to
pharmacies

• Medicine price to pharmacy: refers to the selling price of medicines to hospi-
tals and/or pharmacies

A market with manufacturers and distributors with competition is driven by
a balancing feedback loop (B1). Higher number of medicine companies (manufac-
turers and distributors), imply the increasing of competition for getting a portion
of the market, because companies are interested in reaching a major proportion of
the market, meaning that there is major competition between manufacturers and
distributors. Hence, as the competition increase, it generates a reduction of the
selling price to hospitals and pharmacies. On the other hand, as the selling price
of medicines increase, the market becomes attractive and the number of manufac-
turers and distributors will increase. When increasing production on the market a
reinforcement process is presented (R1). Higher competition generates an increasing
production of medicines, thus the market will have a high number of medicines on
the market that generates more competition between manufacturers and distribu-
tors.
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Figure 3.2: Manufacturers and distributors causal loop diagram

Demand of medicines causal loop diagram

Figure 3.3 shows the causal loop diagram of the demand of medicines, this causal
loop is based on the very known illness causal loop developed in [Wittenborn 2016].
The variables used are:

• Infected population: refers to the quantity of population infected in a period

• Healing rate: refers to the rate that population is healing

• Medicines demand: refers to the consumption of medicines in hospitals

• Epidemiological environment: refers to the quantity of diseases and illnesses

A balancing feedback process (B2) is driven in the demand of medicines. The
infected population is in�uenced by the epidemiological environment, the increasing
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of infected population increases the medicines demand and the increasing of demand
increases the healing rate. Finally, an increasing of the healing rate generates a
reduction of the infected population.

Figure 3.3: Demand for medicines causal loop diagram

Pharmacy causal loop diagram

Figure 3.4 shows the causal loop diagram of pharmacies. The variables used
are:

• Pharmacy inventory: refers to the quantity of medicines available in the phar-
macy

• Emergency purchase: in the case there are not enough medicines on the inven-
tory and the patient needs the medicine at a speci�c time (used to guarantee
the Colombian resolution 1604 2015 that indicates that hospitals must have
a service level of 100% )

• Logistics costs: indicates the cost incurred by the sta� at the pharmacy and
hospital

• Adjustment costs: indicates the cost incurred with the adjustments of
medicines (i.e cutting and packaging medicines into pills), the packaging of
medicines into pills is mandatory for all hospitals by the Colombian resolution
1403/2007

• Governmental policies: indicates the legal regulation and policies of manag-
ing medicines in hospitals such us pills traceability, medicines managing and
administration, among others
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• Shortage: refers to the quantity of medicines that cannot be satis�ed with
the stock hold by pharmacies or hospitals

• Medicine unitary cost: refers to the �nal unitary cost of medicines

Internal processes and the de�nition of the �nal cost of medicines are dominated
by three balance cycles (B3, B4 and B5). Higher level of inventory on pharmacy
produce higher logistics costs driven by a balance cycle (B5), if the logistics costs
increases, the medicine unitary cost also increases, but if the unitary cost increase
the pharmacy inventory is reduced due to budget constraints. On the other hand,
higher inventory levels produce less shortages with a balancing cycle (B4), and the
increase of shortages produces an increasing in the emergency purchases, but if
the inventory levels increases the emergency purchases decreases, also the increase
of emergency purchases increases the inventory levels (B3) Higher inventory levels
and emergency purchases generates higher adjustment costs. This adjustment costs
are also in�uenced positively by governmental policies such as regulation of pills
traceability and registration in public data bases. For this, an increasing in the
adjustment costs generates an increase in the logistics costs. Finally, higher number
of emergency purchases produces higher medicine unitary costs.

Figure 3.4: Pharmacy causal loop diagram
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Causal loop diagram for the pharmaceutical supply chain

Figure 3.5 shows the integration of the speci�c causal loop diagrams shown in
Figures 3.2, 3.3 and 3.4 , it represents the relationships in the pharmaceutical
supply chain. Higher selling price from manufacturers produce less inventory levels,
also this increment generates higher unitary cost of medicines, but this selling price is
regulated or reduced by governmental policies. Finally, higher demand of medicines
generates major shortages and reduce the inventory levels.

Figure 3.5: Causal loop diagram for pharmaceuticals supply chain

3.3.2 Data sources

Data were obtained from the administrative health databases of the hospital and
from public databases. The model requires �ve categories of data: consumption of
medicines, selling prices from manufacturers and sellers, lot size of medicines and
legal regulation of prices.

Consumption of medicines: each patient arrives at the clinic and requires a
speci�c medicine or set of medicines. The data used for the model is the total
amount of consumption of each type of medicine in each month. Consumptions
were obtained from the databases for a period of three years. Daily consumption
was aggregated into monthly, to obtain the total amount of medicines that must
be available in a single period. For each type of medicine and its consumption, a
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goodness of �t test was developed.

Legal regulation of prices: The healthcare system is regulated by local regulation
policies. Hospitals can de�ne the �nal price of a medicine given to a patient, but
this cannot exceed the maximum price de�ned by legal regulation. This is public
available information.

Lot size of medicines: Each manufacturer and distributor have its own lot size
of medicines. This information is given to the hospital.

Selling prices: Each manufacturer and distributor has its own selling price, and
this is given to the hospital during each period of time.

3.3.3 System dynamics simulation model

The system dynamics simulation model was developed using Vensim V6.2. The
delta time (DT) was de�ned as monthly during an interval of a year (12 months).
Hospital manages more than 3000 references of medicines. For this study �ve (5)
items of medicines that share the same space in the storage area was selected based
on their high demand and di�erences in their range of prices, they can be provided
by two di�erent suppliers, who can deliver the product in 1 to 2 months. Demand
can be supplied from the inventory or by an emergency purchase. In the case of an
emergency purchase the pharmacy must �nd the medicine in the market, no matter
what the selling price is, because the service level must be always 100%.

Table 3.1 shows the medicines selected for this study,their distributions and
their statistical metrics were obtained based on the data given by the hospital. The
�rst column presents the name of the medicine and the next shows the demand
probability function (D Type) as result of a goodness of �t test performed for each
medicine with p-values >0.15 based on 30 observations. As the demand for all
medicines follows a normal distribution, the mean (in units) and the standard devi-
ation (SD) are presented. In the �fth column, the selling price of medicines per unit
is presented (PS) in $ COP is presented followed by the price increment if an emer-
gency purchase is made (EI). (%L) is the percentage of medicine lost, this depends
on factors like human mistakes or expiration dates. Inventory policy de�ned by the
pharmacy in terms of re-order point (R) and order quantity (OQ) are presented,
and the last column shows the lot size (LZ) which are standard over the di�erent
suppliers.
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Medicine D. Type Mean SD PS EI %L R OQ LZ

ACETAMINOFEN Normal 4430.00 551.00 150 6-12% Max 1% 5336 392 8
ACETYL Normal 254.30 53.00 133 6-12% Max 1% 341 62 13

ADRENALINE Normal 182.95 95.60 1282 6-12% Max 1% 339 55 4
AMLODIPINE Normal 377.00 99.20 290 6-12% Max 1% 540 33 20

AMOXICILLIN Normal 27.40 29.60 1589 6-12% Max 1% 76 7 12

Table 3.1: Medicine statistics

Following the methodology of system dynamics modeling, it is necessary to clas-
sify the variables into auxiliary variables, stock variables or �ow variables. The
simulation model comprises 15 stocks, 25 out�ow rates and 35 auxiliary variables.
Some other auxiliary variables, stocks and out�ow rates have been included to fa-
cilitate the calculations and the output analysis. The description of the variables in
terms of type, equations and units are presented in Table 3.2.
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]

Table 3.2: Description of variables used in the simulation model

The Forrester diagram for medicine 1 is presented in �gure 3.6. The demand
rate is obtained based on the information presented before; using this and the re-
order point, the purchases that increase the �ows of incoming medicines considering
the lot sizing of each of them are obtained. Once a purchase is made, the quantity
of medicines are accumulated increasing the levels of the variables (stocks or level
variables). Medicines are accumulated, and the in�ow rates (reduction of the levels
of medicines) are the quantity of expired medicines and the demand. If there is
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not enough medicine available, a �ow of emergency purchases is used to satisfy the
demand. Therefore, some auxiliary variables, �ows and stocks (or levels) are used
to obtain the total unitary cost.

The stocks are used to accumulate the amount of medicine 1 on inventory that
can be used to satisfy the demand, this levels can be reduced also by the amount of
product lost of the same type of medicine and the demand. The inventory increases
by the total amount of purchases of medicine 1. Also, a stock for emergency prices
and the cumulative cost of medicine 1 are used. Finally, an auxiliary variable of the
unitary cost for each month is used to calculate all the expenses for the medicine.

Figure 3.6: Forrester diagram for medicine 1

3.3.4 Validation

Structural model: Causal loop diagrams were built based on previous works in the
�eld (econometric studies and system dynamics approaches in the pharmaceutical
sector) see section 3.3.1 and the �eldwork developed in the hospital. The pharmacy
area validated the elements of the diagrams and their relationships.

Simulation model: Based on the results of the simulation output a t-student
test was used in order to validate the simulation model . Hypothesis testing tech-
niques are used to determine if the average results of the simulation model are
statistically similar to the real data for each type of medicine (�nal costs consid-
ering the uncertainty). For each medicine a con�dence level of 95% was used and
the results are provided in Table 3.3 based on 50 replications. Based on this it's
possible to validate the results of the model.
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Medicine H0 Result P-Value

ACETAMINOFENE Not rejected 0.52
ACETYL SALICYLIC Not rejected 0.13
ADRENALINE Not rejected 0.23
AMLODIPINE Not rejected 0.07
AMOXICILLIN Not rejected 0.32

Table 3.3: Results of validation

3.4 Results and discussion

Figures 3.7, 3.8, 3.9, 3.10 and 3.11 show the e�ect of the administration of
medicines in the �nal unit-dose costs (�nal costs in Colombian pesos in the y-axis).

Figure 3.7: Box plot �nal unit-dose cost medicine 1
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Figure 3.8: Box plot �nal unit-dose cost medicine 2

Figure 3.9: Box plot �nal unit-dose cost medicine 3
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Figure 3.10: Box plot �nal unit-dose cost medicine 4

Figure 3.11: Box plot �nal unit-dose cost medicine 5

For medicines 1, 2 and 5 there is a high variation of costs, by contrast with
medicines 3 and 4. This is explained by the supplying conditions of the hospital
that includes a cost for cutting and packaging unit-doses. For these �ve medicines
the �nal cost is increased by 158%, 137%, 41%, 116% and 36% respectively because
of the interaction of all uncertainty sources and variables. Each of the medicines
has its own behavior and they are a�ected in di�erent ways by the complexity of
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the system.

The e�ect of lead times and the re-order time (r,Q) policy over the planning
horizon, coupled with the in�uence of other factors, creates irregular cost behavior,
and their �nal costs change over time due to di�erent in�uences. This result can help
the hospital to determine the likely expenses and income for a �nancial planning
horizon, but this model cannot determine the �nal cost of a medical treatment,
which is out of the scope of this study.

It can be observed that for medicines with lower costs like medicines 1, 2 and
4 the �nal costs are duplicated, meaning that the logistics costs and other external
factors have a high impact on the original price of the medicine. This means that
the legal regulation about the reimbursement values of medicines may be ignoring
these issues in the established policies.

These unit-dose cost variations are highly in�uenced by external factors such
as market prices and expiration dates. Some detailed results for medicine 5 are
presented in Figures 3.12, 3.13 and 3.14. Figure 3.12 presents the behavior of the
unitary cost during the year (x-axis represents time and y-axis �nal costs), Figure
3.13 contains the behavior of the inventory levels (x-axis represents time and y-axis
inventory levels), and Figure 3.14 presents the emergency purchases in the same
period (x-axis represents time and y-axis emergency purchases).

Figure 3.12: Behavior of unitary cost medicine 5
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Figure 3.13: Behavior of inventory levels medicine 5

Figure 3.14: Behavior of emergency purchases medicine 5

It can be observed that the �nal costs of medicines do not have a linear behavior.
Due to the lead times of manufacturers, sometimes there will be no medicine in the
inventory (stock=0), a situation that triggers the purchase of emergency medicine,
which increments the cost of the purchase. Also, it can be observed that the �nal
costs do not always have the same in�uences. For example, in some periods 44%
of the �nal cost is in�uenced by the stock and 56% is in�uenced by emergency
purchasing, while in some other periods the �nal price is in�uenced by purchasing
and emergency purchasing in di�erent proportions. Also, in some periods of time
the unitary cost is 0, a situation that occurs because in these periods there are no
purchases or emergency purchases. In that case, demand is satis�ed by the units
remaining in the inventory.

Finally, Figures 3.15, 3.16 and 3.17 present the comparison between the range
of the �nal unit-dose cost of a medicine and the reimbursement value (FOSYGA
Law 1283 1996) for medicines 1 and 2, 3 and 5 and 4 respectively . (the point is the
value of the current reimbursement approved by the government).
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Figure 3.15: Reimbursement and range of costs medicine 1 and medicine 2

Figure 3.16: Reimbursement and range of costs medicine 3 and medicine 5
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Figure 3.17: Reimbursement and range of costs medicine 4

In the cases of medicines 1 and 2, the value of reimbursement is less than the
minimum value of the range. In the cases of medicines 3, 4 and 5, the value is
between the extremal values. In the cases of medicines 1 and 2 there is no scenario
in which the hospital can recover the money invested in medicines, or much less
generate pro�ts from the administration of medicines. This fact can be explained
by the low unit cost of medicines, which makes the internal cost larger than its unit
value and therefore does not reach the maximum value of the medicine.

On the other hand, it can be observed that the reimbursement values of medicines
3, 4 and 5 are within the range of variation of the price of the medicine, which means
that there are possible scenarios in which the administration of medicines recovers
the value of the medicines, in certain occasions generates some pro�ts from their
administration. However, this does not happen in all cases since there are external
elements such as emergency purchases, medicine losses and variations in sales prices
that directly a�ect the �nal cost of the medication, in addition to the hospital's
internal administration.

3.5 Sensitive analysis

A sensitive analysis is developed to determine the variation of the �nal cost due to
changes in some variables used in the model. In Figure 3.18 the sensitive analysis
is presented based on the parameters shown in the Table 3.2. This analysis is
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composed by four variations: (a) a variation of the set-up cost (costs related to orders
management), (b) a variation of the �xed costs (cost related with pills traceability),
(c) a variation of both parameters, set up cost and �xed cost and (d) a variation of
the selling price. The range of variations for the �rst three cases are from 0 to the
maximum value. In the case of the selling price the extreme case is considered in
which the selling price of medicine is reduced to the half, this a�rmation is not far
from reality because there are some cases in which government establish or reduce
the selling prices of medicines to hospitals. Analyzing the behavior between the
changes of (a) and (b), it can observed that bigger variations are presented when
changes are made with the set-up cost over the �xed cost. Also if both changes are
made and the cost is reduced, the reduction over the �nal cost of the medicine can
reach a 28%. Finally, over the graph (d) it can be concluded that the reduction over
the �nal cost is mainly driven by the selling price of medicines, this can enhance
to public and national governments to analyze and propose policies to control the
selling prices.

Figure 3.18: Sensitive analysis



3.6. Conclusions 55

3.6 Conclusions

This chapter presents a conceptual modeling framework using causal loop diagrams
to characterize the dynamics of the pharmaceutical supply chain. Based on this, a
system dynamics simulation model for the pharmaceuticals supply chain was devel-
oped in order to represent the impact on the �nal cost of medicines. The model was
calibrated and tested based on currently available data in the hospital. From this
study it can be observed that the �nal cost of medicines is not static and it is a�ected
by di�erent factors such as the amount of expired medicines, adjustment costs, lo-
gistic costs, emergency purchases and shortages. This model allows to understand
the behavior of supplying medicines to patients and the behavior of the �nal cost of
medicines, which is a key aspect due to the legal regulation of the reimbursement
medicines in Colombia. The model developed can be used to explore di�erent sce-
narios that will help decision makers to ensure alignment with the consumption of
medicines by patients and to the �nal cost of medicines. The simulation model pre-
sented in this chapter is applied to a Colombian hospital, however it can be applied
also in other pharmaceuticals systems. An analysis of the reimbursement values
were presented, for this reason the approach in this chapter could be used as one
of the elements to determine the maximum prices of medicines by legal regulation
taking into account the particular conditions of the hospitals and the uncertainty
associated.

Future research can include economic factors and policies used by pharmaceutical
companies and pharmacies to �x the prices of medicines. Also, future work will
include some optimization policies for the hospital to determine the best quantities
of medicines and then try to reduce the unit-dose costs. Other future research will
include the study of generic medicines, their e�ectiveness on patient health, and
their impact in the total costs.
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This chapter presents an application of simulation-optimization approach based
on the stochastic counterpart or sample path for optimizing tactical and opera-
tional decisions in the pharmaceutical supply chain. This approach focuses on the
pharmacy-hospital echelon, and it takes into account random elements related to
demand, costs and the lead times of medicines. Based on this approach, two mixed
integer programming (MIP) models are formulated, these models correspond to
the stochastic counterpart approximating problems. The �rst model considers ex-
piration dates, perishability and other elements related with legal regulations as
the service level required, aged-based inventory levels, unit-doses preparation and
emergency purchases. The optimal policy support decisions related to the replen-
ishment, supplier selection and the inventory management of medicines. The results
of this model have been evaluated over real data and simulated scenarios. The sec-
ond model is a bi-objective optimization model solved with the epsilon-constraint
method. This model determines the maximum acceptable expiration date, thereby
minimizing the total amount of expired medicines.
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4.1 Introduction

Supply chain management costs account for 25% to 30% of total costs in hos-
pital expenses [Gebicki 2014]. Additionally, the costs associated with moving
and handling medicines can vary between 35 to 40% of the total logistic costs
[McKone-Sweet 2005]. The pharmaceutical industry is one of the most challenging
industries in the world, since it is estimated that medicines consume about 10% to
30% (sometimes as high as 60%) of global health spending [Xu 2018]. Given the in-
herent di�erences between medicines and traditional industrial products, compared
to the analysis of traditional supply chains, the analysis of pharmaceutical supply
chains requires special considerations. For example, some medicines and surgical
supplies must be available for use at all times [James Little 2008], and medicines
have strict regulatory requirements related to the length of manufacturing time, dis-
tribution, product shelf life, and the reimbursement values that can be obtained by
the government or the insurer [Almarsdóttir 2005]. In addition to these character-
istics which make it di�erent from other supply chains, the pharmaceutical supply
chain deals with uncertainty; for example, the demand of each medicine is uncer-
tain and can be in�uenced by seasonal changes. Moreover, due to the regulatory
conditions, the costs and reimbursement values can be uncertain.

In some countries, health expenses can vary between 7 to 10% of the total gross
domestic product and the pharmaceutical costs take up a large portion of this to-
tal, reaching approximately 10% [Priyan 2014]. Hospitals and clinics face several
problems, such as the high and variable prices of medicines, physical and monetary
constraints and the medicines' expiration due to their perishability. The managers
of hospitals have given importance to this context in order to optimize pharmaceu-
tical supply chain decisions, such as supplier selection, expiration dates, quantities,
and supply system performance indicators. Models for determining optimal replen-
ishment policies for single products can be found in the literature; however, these
studies are not easily applied in hospitals since the range of medicines must be an-
alyzed as a whole because they can share space or monetary resources. Moreover,
the medicines' individual characteristics, such as obsolescence and internal costs,
must also be considered. The inventory management of medicines presents two
types of risks: demand can exceed supply, resulting in shortages; or, supply can
exceed demand, resulting in surplus inventory [E. David Zepeda 2016]. Therefore,
it is important to develop models and tools that integrate these speci�c elements
and provide good criteria for the decision makers.

In this context, the goal of this chapter is to develop mathematical models to
determine replenishment policy and expiration date selection of medicines consider-
ing di�erent sources of uncertainty and other elements related with legal regulations
by using a simulation-optimization approach in order to minimize the overall cost
of managing medicines in hospitals.
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4.2 Background

Di�erent authors have studied the problem of medicine inventories and de-
veloped optimization models by considering di�erent types of constraints and
di�erent types approaches to model the uncertainty of information as fuzzy,
robust, probability functions, among others. Di�erent reviews have been carried
out by [Kwon I Kim 2016], [Narayana 2012], [Narayana 2014], [Franco 2017],
[Volland J., Fugener A., Schoenfelder J., Brunner J. 2017], [Laínez 2012] and
[Garcia 2015]. The most common constraint considered in the literature to
model inventory problems is the space constraint. A �rst approximation to this
model was proposed by [Vincent 1984]. They proposed an extension of the basic
periodic review model by giving a cost to the space required keep an item. The
space constraint is included in the objective function that minimize the total
cost, this model considers a single medicine. [James Little 2008] developed a
constraint-based model that considers the criticality of medicines and determines
stock levels for all products at a storage location with space constraints. The
decision variables are related to the service level, the frequency of delivery and the
amount to order up. The objectives tested are the maximization of the minimum
service level and the maximization of the average service level. The models were
tested by using 110 di�erent medicines. This model is an extension of the article
presented by [Vincent 1984]. Other authors have developed approximations to
problems with similar characteristics however these models are not developed in the
context of medicines or hospital inventory management [Liang-Yuh Ouyang 2015],
[Chou 2009], [Chung 2012], [Tsai 2013] and [Priyan 2015].

Other approximations for inventory management in hospitals have been devel-
oped by [Åatir 1987]. This paper presents a stochastic and periodic review model
in which the objectives used are formulated in terms of stock-out and budget. The
model contemplates the use of three kinds of medicines, and results are analyzed
with a sensitivity analysis. [Guerrero 2013] proposed a Markov chain to model the
problem using order up to level policies and considering stochastic demand, batch-
ing, emergency deliveries, and service levels. Also, a heuristic is proposed to �nd
near-optimal replenishment solutions.

[Dellaert 1996] proposed an extension of the (R, s, S) model. It is denoted as the
(R, s, c, S) model and they use the classic version of the EOQ model. The proposed
model considers stochastic demand and it is tested using a planning horizon of 100
time periods and 1544 items. After implementation in a hospital and an evaluation,
it was determined that the total costs were reduced.

Another approximation of an inventory model has been developed by
[Kelle 2012]. Two exact models for decisions at the operational level were formu-
lated. The �rst model is based on a (s, S) model with space constraints; some
parameters are assumed to be stochastic where shortages are allowed. The second
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model is formulated in terms of optimal allocation based on ordering and holding
costs with service level constraints. Using this model, it is demonstrated that the to-
tal cost of pharmaceutical inventory can be reduced by up to 80%. In [Samira 2016]
authors propose a stochastic inventory model with the main objective of mitigate
the shortages in a healthcare facility.

An approximation of inventory control via simulation was developed by
[Vila-Parrish 2008]. The model involves two stages; the �rst consists of the devel-
opment of a Markov decision process to represent medicines' demand as a function
of the patient condition, allowing the determination of the appropriate medicine
inventory levels. The second phase consists of the use of simulation to evaluate the
inventory policies characterized in the �rst phase. In this simulation model, the
lead times and �xed production costs are not considered. In contrast to this ap-
proximation, Dengfeng et al. developed a simulation model using system dynamics
[Dengfeng 2015]. In this paper, the demand is approximated as a normal distri-
bution and a safety stock is used. The scenarios used in the simulation show that
shortages can be reduced. Another approximation using system dynamics was devel-
oped by [Wang 2015]. Using the results of their simulation, these authors developed
a dynamic drum-bu�er-rope replenishment model. A Powell search algorithm was
used to determine bu�er sizes and inventory quantities. The model was tested on
real data, demonstrating that the model can �nd the optimal replenishment timing
and quantity while minimizing the total cost and avoiding stock-outs.

Pharmaceutical inventory models have been analyzed taking into account RFID
(Radio Frequency Identi�cation) technologies [Çaklcl 2011]. In this article, the au-
thors demonstrate that continuous review is superior in terms of costs to periodic
review whenever accurate real-time information is available with no additional cost.
The proposed model considers only one product, and the demand is modeled as
a continuous stochastic process with stationary and independent increments. The
lead time is assumed to be deterministic and a constant number and shortages are
backordered. While this model does not consider the economic e�ect of the use of
RFIDs, [Matthieu-P. Schapranow 2012] develops some approximations of the real
costs of the use of RFIDs in the pharmaceutical supply chain.

While most of the objective functions consider the minimization of total costs,
[Gökçe 2016] consider the maximization of the total net pro�t. The problem is
formulated as a mixed-integer linear programming model with a hybrid time rep-
resentation. The model considers the use of the VMI (Vendor Managed Inventory)
strategy, a planning horizon of three months and 15 products.

[Gebicki 2014] proposed a simulation method for testing di�erent inventory poli-
cies by considering the medicines' characteristics such as such as provision through
multiple dispatching machines, unit costs, availability of suppliers, criticality levels
and expiration dates. For testing the policies, a simulation model was developed.
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The policies tested were based on classic models, such as reorder point quantity
models; the demand was assumed to be normal, and they used the lead times as
a deterministic value de�ned by the suppliers. With the simulation model, they
also tested which characteristics of medicines were important in choosing a policy,
the authors conducted 2000 statistical tests to determine the importance of these
characteristics.

A mathematical model using two forms of stochastic data has been developed by
[Rappold 2011]. This is the only article that assumes a stochastic bill of materials
for the procedures in an operating room. In addition, a stochastic demand is as-
sumed. The authors developed a mathematical model using stochastic uncertainty
and tested this using real data.

In most articles, models were developed considering uncertainty, however
[Balcázar-Camacho 2016] and [Giuseppe 2016] developed a linear programming
model for a distribution network. The proposed model considers a multi-echelon
distribution system in which the objective function involves the minimization of the
total costs.

Two exact models for lost sales and limited storage capacity have been developed
by [Bijvank 2012]. In the capacity model, the service level is maximized subject to a
capacity constraint; in the service model, the capacity required is minimized subject
to a service level constraint. Authors developed a heuristic for the capacity model
in which the re-order levels and order quantities are �xed. Another model that
include storage constraints was developed in [Maestre 2018]. The proposed model
is based on model predictive control to make decisions related to inventory levels of
medicines applied in a hospital.

There are some other types of inventory models in hospitals that are not lim-
ited to medicines. [Diamant 2017] studied a problem in a hospital that outsources
their sterilization services, the authors modeled the inventory process as a discrete-
time Markov chain. They developed two base-stock inventory models: the �rst one
considers stock-out-based substitution, and the second one doesn't consider it. The
authors developed an analysis and varied the service level to determine the decisions
related to inventories, stock-outs, and costs.

There are also some works that study the perishability of products in �elds other
than healthcare. For example in [Hengyu 2018] the perishability of agricultural
foods is modeleded by using a surviving rate of product theta. Some experiments
are carried out to measure the impact of the variation of this rate. Additionally, in
[Janssen 2018] a perishable model for food waste is used and a simulation model is
developed to validate and made a sensibility analysis. The proposed model considers
the closing day's constraints and scenarios proves that saves up to 18% can be
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obtained.

In addition, a reinforcement model based on age, considering a single product
and a single echelon is developed in [Kara 2018]. The authors develop a method
that can obtain a near-optimal solution considering the lead time and the life cycle
as deterministic. A similar approach is developed in [Chaaben 2018] considering
the life cycle as �xed or following an exponential distribution. Another approach is
the study developed in [Rosa 2017] in which perishability is studied in production
systems with delays in processes.

A pharmaceutical supply chain optimization model for crises events is presented
in [Roshan 2019]. This model considers three di�erent objective functions: costs,
unmet demand and social responsibility. The authors proposed a MINLP model
considering the uncertainty in the demand and the use of fuzzy logic, and they
developed an auxiliary crisp model by using a triangular form. The model was
tested by using a study case of Seattle. Another work that includes uncertainty as
a fuzzy approach was developed in [Mousazadeh 2015] where authors proposed a
mathematical model for mid-term decisions, such as a location-distribution problem
in a network design.

An optimization model for a global pharmaceutical supply chain network is
proposed in [Susarla 2012]. The authors propose the use of the production process
in a multi-echelon, multi-side and multi-period problem. The proposed model is
tested over data from a multinational company, and di�erent types of con�gurations
were assessed. [Meiler 2015] developed another planning model, where the authors
proposed the use of a MILP model combined with network �ow calculations.

Another approach based on a real case of the pharmaceutical industry is de-
veloped in [Amaroa 2008]. The proposed model contemplates the modeling of the
scheduling and planning of pharmaceutical supply chains with reverse �ows. The
authors propose the use of a master representation of the supply chain at the opera-
tional level and a mathematical formulation to optimize the supply chain planning,
connecting both problems with the use of bounds.

An application of simulation based optimization for a multi-objective problem
is studied in [Caricato 2008]. The proposed approach is based on a real case study
of the automotive sector where using a Pareto dominance concept, ine�cient solu-
tions are eliminated to provide only good quality solutions. Another application of
simulation-based optimization in the design of energy e�cient buildings is developed
in [Sadik 2018]. Additionally, in [Mualla 2018], a multi-objective simulation-based
optimization model is developed to solve the inventory replenishment problem with
premium freights in convergent supply chains.
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4.3 Methods

The simulation for optimization approach called the stochastic counterpart or sam-
ple path method discussed in [Fu 2002] and [Shapiro 1996] have been used. In this
approach the simulation is the add-on used to generate scenarios for mathemati-
cal programming formulations. More speci�cally, a �nite number of scenarios are
generated, and the expected value function is approximated by the corresponding
average function; this approximation is solved by classical optimization techniques.
In a formal way, let the following objective function:

min
x∈Θ

f(x) = E[g(x, ξ)] (4.1)

Where x ∈ Θ contains the input variables; f(x) is the expected objective function
value and ξ contains the random parameters. The approach previously mentioned
consists in the generation of ξ1, ξ2, ..., ξk independent realizations or scenarios that
belong to the random vector ξ, and the objective function is approximated by:

min
x∈Θ

f̂(x) =
1

K

K∑
k=1

g(x, ξk) (4.2)

The problem 4.2 becomes a deterministic optimization problem and is solved
by using deterministic optimization techniques. Let ẑk and x̂k denote the optimal
objective value and the optimal solution of problem 4.2, respectively. By the law
of large numbers, ẑk converges to f(x) w.p.1 as K → ∞; therefore, ẑk and x̂k are
consistent estimators of their "true" counterparts 4.1 [Shapiro 1996]. Based on this,
Figure 4.1 presents the detailed methodology used in this study.
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Figure 4.1: Methodology

The methodology presented in Figure 4.1 comprises: (i) the generation of a
�nite number of scenarios for random elements (Demand, Lead time and Costs
of medicines), (ii) the mathematical programming formulation of two mixed integer
programming (MIP) models, which correspond to the stochastic counterpart approx-
imating problems for supply, replenishment and inventory management of medicines
in the case of Model 1 and for decisions about expiration dates of medicines in the
case of Model 2. The second model is proposed by adding the expiration date as a
decision variable and by reformulating the problem as a bi-objective optimization
model, which is solved by using the epsilon-constraint method. (iii) Using the values
obtained through the generation of scenarios and the di�erent parameters as inputs
both models are solved to optimality. (iv) The �nal part of the methodology is
the evaluation of the quality of solutions in a real case and the evaluation of the
results of the proposed models for di�erent indicators by using simulation for the
�rst model and Pareto frontier for the second model.

4.4 Assumptions of the mathematical models

The main elements of the pharmaceutical supply chain are the following: (i) the
suppliers that manufacture or distribute the medicines; (ii) the pharmacy that is in
charge of ordering medicines from the suppliers, keeping the medicines safe, manag-
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ing the inventory of medicines and distributing the medicines to the hospital; (iii)
the hospital that provides medicines to patients and places orders from the phar-
macy and �nally (iv) the patients who require treatment and medicines (Figure
4.2).

Figure 4.2: Interaction in the pharmaceutical supply chain

According to Figure 4.2, all decisions and actors in the chain deal with sources
of uncertainty: Hospitals managers and pharmacies do not know the demand for
the medicines, the pharmacy does not know the exact selling price of the medicines
because the price can change over a planning horizon, and the lead times of suppliers
are unknown to the pharmacy. In addition, the expiration dates are only known once
the medicine arrives at the hospital. In this context, the sources of uncertainty are
(i) demand, (ii) lead times and (iii) the costs of medicines (selling prices). Given
the interaction of the echelons presented in Figure 4.2, the echelons and links of
interest in this approach are highlighted; the main interest is to analyze the echelon
of the pharmacy because it is the place where orders are placed to suppliers (where
the decisions are taken). Based on this, the following assumptions are considered in
this approach:

• Assumption A1: Each period time in T is one month.

• Assumption A2: The horizon planning is one year but it can be applied over
higher horizons.

• Assumption A3: Lead time is positive, and it is modeled through the gener-
ation of scenarios.

• Assumption A4: The life cycle or expiration date is deterministic and known
beforehand by the scenarios generated (only for the mathematical model 1).

• Assumption A5: The demand is modeled through the generation of scenarios.

• Assumption A6: Orders of medicines are placed by a number of lots because
in hospitals, the requirements are not supplied by units of medicines or pills.
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• Assumption A7: For each medicine, the initial stock = 0.

• Assumption A8: Orders are placed considering the lead time, except for the
�rst period when the lead time is equal to 0; in this special case, this lead
time is relaxed to avoid infeasibility.

• Assumption A9: The received order is placed with age = 1.

• Assumption A10: Quanti�cation of expired medicines are modeled through
the classical inventory level constraints taking into account the life cycle of
medicines in order to consider the traceability requirements of medicines de-
termined by Colombian law 0371/2009, therefore, medicines with di�erent
remaining times are used to satisfy the demand, decreasing the inventory
levels for the speci�ed remaining time.

• Assumption A11: Given the Colombian regulation (resolutions 1896/2001
and 1604 2013), the demand of medicines must be satis�ed with a 100% of
service level. In case that inventory is not enough to satisfy the demand, an
emergency purchase is made to satisfy it, and the price of the medicine is
higher than its regular purchase price.

• Assumption A12: There is no lead time for the emergency purchase; thus,
once the purchase is required, the medicine arrives to satisfy the demand.

• Assumption A13: Figure 4.3 outlines the structure of the decisions, the
uncertainty and the information available in the horizon planning. In this
example, once a decision to purchase is made in a speci�c period time, the
cost of medicine is determined for this speci�c period time. This is because
the selling price is a random element and changes in every period of time. In
addition, the lead times of medicines are random elements. Once the medicine
arrives, it can be used to satisfy the demand and/or kept in inventory by using
the age-based inventory constraints and the age of medicines to model the
perishability. After a number of cycles, some medicines are expired because of
their age; therefore, if there is not enough quantity of medicines on inventory
to satisfy the demand that is a random element too, an emergency purchase
can be made to satisfy the demand, but the purchase will be made at a higher
price.

• Assumption A14: Constraints of the mathematical model were built based
on the underlying event dynamics of the system. The demand pulls the sys-
tem reducing the inventory level of medicines. The decisions of regular and
emergency purchases are in�uenced by the inventory level (IL ≥ 0 or IL ≤ 0)
and the expired medicines. Once a decision is made, medicines arrive with a
lead time updating the inventory level. In this way decisions of regular and
emergency purchases are feasible overall scenarios allowing the generation of
a common policy of purchases.
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Figure 4.3: Structure of decisions

• Assumption A15: In this approach, the mathematical models are focused on
the decisions taken by the pharmaceutical area that belongs to the hospital.
In the context of this study, the hospital is in charge of patients, and the
responsibility of managing medicines is the responsibility of the pharmacy
area

4.5 Mathematical Model 1: Medicine's replenishment

under uncertainty

Sets

N Time periods in the planning horizon

P Type of medicines

S Suppliers

L Set of medicine's age

K Scenarios of the random vector

Random numbers

dptk Demand of medicine type p in period t in scenario k

ltspk Lead time of supplier s for medicine p in scenario k

csptk Cost of medicine p by the supplier s in period t in scenario k
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clpsk Cost of expired medicine p from supplier s in scenario k

Parameters

lsp Lot size of medicine type p

avsp

{
1 if the supplier s sells the medicine p
0, otherwise

utp Unitary time for making unit doses for medicine p

lcp Shelf life of medicine p

ecp Emergency cost of medicine p

cap Human resource capacity (in hours per month)

mna Maximum number of orders of di�erent types of medicines

Variables

Qspt Number of lots of medicine p in period t placed to supplier s

yspt

{
1 if the requirement of medicine p to supplier s in period t is placed
0, otherwise

IP lkpt Inventory level of medicine p with life cycle l in time t in scenario
k

Ikpt Inventory level of medicine p in time t in scenario k

RP lkpt Amount of medicine p of life cycle l administrated to patients in
time t in scenario k

Rkpt Total amount of medicine p administrated to patients in time t in
scenario k

EQpt Number of lots of medicine p purchased in case of emergency in
period time t

The model proposed is formulated over a planning horizon T , where |T |=12 and
each time period correspond to one month where also each medicine has it own
shelf life L, where |L|=12. In each month for each type of medicine p ∈ P there is
a demand dptk that is generated by using a set K of scenarios. The requirement of
medicines are satis�ed by a set of suppliers S where the parameter avsp indicates if
the supplier sells the medicine p ∈ P . In addition, each supplier s has its own lead
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times ltspk that is generated by using a set of scenarios K. Each type of medicine
has its shelf life or expiration date determined by lcp.

There are two main variables denoting the medicines' requirements, Qspt and
EQpt. The �rst variable determines the lots of medicines to request to a speci�c
supplier, this requirement is related with the parameter lsp that determines the
number of medicines in each lot. Once a purchase is completed, the amount of
medicines increases the inventory-based age constraints with the respective age L
(where each age increases in months; age 1= 1 month, age 2 = to months, and so
on) in IP lkpt . These purchases are made with a random cost csptk. The variable RP lkpt
de�nes the quantities of medicines that are taken from inventory levels to satisfy the
demand. In case there is not enough quantity of medicines to satisfy the demand,
the variable EQpt determines the quantity of medicines that are purchased in case
of emergency to satisfy the demand, this purchase is made with a cost ecp where
ecp>csptk. They are also request in terms of lots lsp.

The maximum number of orders allowed in each period time is de�ned by mna.
To satisfy this constraint, the binary variable yspt is used to determine if in a speci�c
period of time, an order of medicine to a speci�c supplier will be launched. Another
type of administrative constraint is modeled considering the number of human re-
sources available per period time, which is de�ned by cap. To model this constraint,
the parameter utp that indicates the consumption of time in hours to prepare a
unit-doses is used.

Objective

The objective function minimizes the expected total costs over all scenarios. It
contains the costs of regular purchases, the costs of emergency purchases and the
costs of expired medicines (readers should note the inventory holding cost is not
included directly, but it can be estimated through the use of the expired medicines,
according to [Ghiani 2004] and is de�ned by the obsolescence costs).

Min z =
1

|K|

(∑
k∈K

∑
t∈T

∑
s∈S

∑
p∈P

csptk∗Qs
pt+|K|

∑
t∈T

∑
p∈P

ecp∗EQpt+
∑
s∈S

∑
k∈K

∑
t∈T

∑
p∈P

∑
l∈L|(t−l)>ltspk−1

clpsk∗IP lk
pt

)
Constraints

In this formulation, the age of medicines is modeled by using the shelf life in order
to consider the traceability requirements of medicines determined by the Colombian
law 0371 2009. Based on this, two di�erent types of constraints are built (1 and 2).

1. The aged inventory for each scenario, for each type of medicine and for each
life cycle is de�ned. This means that in a time period, there are amounts of the
same medicine that have di�erent life cycles. Thus, the constraints in a speci�c
time period for a speci�c medicine of a speci�c life cycle is equal to the amount
of medicine in the previous period that has one period less of life cycle minus the
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amount of medicine used to satisfy the demand with any speci�c life cycle. Then,
the age of medicine used to satisfy the demand can be selected.

IP lkpt = IP l−1kpt−1 −RP
lk
pt−1 ∀t,∀p,∀l|l ≤ t and t− l ≤ lcp − 1, ∀k

2. This constraint is complementary to constraint 1 because it establishes that
when a purchase is made the life cycle of the medicine is one; in this way the life
cycle of medicines when they increase the period of life can be modeled. Also, the
amount of medicines is multiplied by the lot size. Finally, the amount of medicines
with a life cycle of one given to satisfy the demand is subtracted.

IP lkpt =
∑
s∈S

lsp ∗Qspt−ltspk −RP
lk
pt ∀t,∀p,∀l = 1,∀k

3. The net inventory for a speci�c type of medicine in every time period in each
scenario is equal to the total amount of medicines in a speci�c time period in a
speci�c scenario for each type of medicine.

Ikpt =
∑
l∈1..t

IP lkpt ∀t,∀p,∀k

4. Similar to constraint 3, the amount of medicines distributed to satisfy the
demand is totalized.

Rkpt =
∑
l∈1..t

RP lkpt ∀t,∀p,∀k

5. Guarantee that it is only possible to purchase medicines if the binary variable
yspt is activated.

Qspt ≤M ∗ yspt ∀t,∀p,∀s

6. The availability of medicines is modeled as the relationship between the
binary variable that de�nes if a speci�c amount of medicine is supplied by a speci�c
company and the parameter that indicates if the company has in its portfolio a
speci�c medicine.

yspt ≤ avsp ∀t,∀p, ∀s

7. By Colombian regulation (1403/2007), every medicine must be put in unit-
dose packages; therefore, preparation of unit-dosesâ times and the capacity of regents
of pharmacy must be taken into account in the models. The unitary time for each
type of medicine is multiplied by the amount of medicines (lot size multiplied by the
quantity of lots requested from companies); this amount cannot exceed the capacity
of personnel involved in this task.
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∑
p∈P

∑
s∈S

utp ∗ lsp ∗Qspt ≤ cap ∀t

8. Given the Colombian regulation (resolutions 1896/2001 and 1604 2013), the
demand of medicines must be satis�ed with a 100% of service level; therefore, the
hospital is not allowed to have backorders or shortages because of the potential for
negative impacts on the health of patients. Thus, if there is not enough medicine in
inventory, an emergency purchase is made, but the cost of each medicine increases.

Rkpt + lsp ∗ EQpt = dptk ∀t,∀p, ∀k

9. A di�erent type of human capacity constraint is modeled in this equation.
Given the high number of products, suppliers and administrative procedures related
to the purchase of medicines usually conducted by a single professional, it is not
allowed to request all medicines in each period of time.∑

p∈P

∑
s∈S

yspt ≤ mna ∀t

10. Medicines with ages that are higher than its perishable date cannot be
distributed to patients.

RP lkpt = 0 ∀t,∀p,∀l|t− l > lcp − 1, ∀k

11. The bound of variables are modeled by the following equations.

Qspt ≥ 0 ∀t,∀p,∀s
IP lkpt ≥ 0, RP lkpt ≥ 0 ∀t,∀p,∀l,∀k

Rkpt ≥ 0, Ikpt ≥ 0 ∀t,∀p,∀k
EQpt ≥ 0 ∀t,∀p

Qspt, I
k
pt, RP

lk
pt , R

k
pt, IP

lk
pt , EQpt ∈ Z
yspt ∈ {0, 1}
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The mathematical model for medicine's replenishment under uncertainty is sum-
marized as follows:

Min z =
1

|K|

(∑
k∈K

∑
t∈T

∑
s∈S

∑
p∈P

csptk∗Qs
pt+|K|

∑
t∈T

∑
p∈P

ecp∗EQpt+
∑
s∈S

∑
k∈K

∑
t∈T

∑
p∈P

∑
l∈L|(t−l)>ltspk−1

clpsk∗IP lk
pt

)
(4.3)

Subject to:

IP lkpt = IP l−1kpt−1 −RP
lk
pt ∀t,∀p,∀l|l ≤ t and t− l ≤ lcp − 1, ∀k (4.4)

IP lkpt =
∑
s∈S

lsp ∗Qspt−ltspk −RP
lk
pt ∀t,∀p, ∀l = 1,∀k (4.5)

Ikpt =
∑
l∈1..t

IP lkpt ∀t,∀p,∀k (4.6)

Rkpt =
∑
l∈1..t

RP lkpt ∀t,∀p,∀k (4.7)

Qspt ≤M ∗ yspt ∀t,∀p,∀s (4.8)

yspt ≤ avsp ∀t,∀p,∀s (4.9)

∑
p∈P

∑
s∈S

utp ∗ lsp ∗Qspt ≤ cap ∀t (4.10)

Rkpt + lsp ∗ EQpt = dptk ∀t,∀p,∀k (4.11)

∑
p∈P

∑
s∈S

yspt ≤ mna ∀t (4.12)

RP lkpt = 0 ∀t,∀p,∀l|t− l > lcp − 1,∀k (4.13)
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Qspt ≥ 0 ∀t,∀p,∀s
IP lkpt ≥ 0, RP lkpt ≥ 0 ∀t,∀p,∀l∀k

Rkpt ≥ 0, Ikpt ≥ 0 ∀t,∀p,∀k
EQpt ≥ 0 ∀t,∀p

Qspt, I
k
pt, RP

lk
pt , R

k
pt, IP

lk
pt , EQpt ∈ Z
yspt ∈ {0, 1} (4.14)

4.5.1 Experimental setting

Real data provided by a private Colombian hospital was used and the following
information were analyzed: supplier selling prices, lead times , shelf life and demand
of medicines as well as the emergency purchases and their prices, lot size of medicines
and time requirements for making unit-doses. The model was tested over a planning
horizon divided in 12 time periods with the 22 medicines with higher demand, 10
suppliers ( taken directly of the real information of the hospital) and 30 scenarios in
order to get a reasonable computational time and guarantee an estimated gap <1%
[Shapiro 2008] (see subsection 4.5.2).

As it is considered three di�erent sources of uncertainty (demand, lead times
and costs of medicines), it has been used di�erent approximations to generate the
di�erent scenarios as follows:

• Demand of medicines (dptk). The demand is generated according to a non-
homogenous Poisson process because for each time period, the increments are
not stationary as it is concluded by the Mann Kendall and Laplace temporal
trend tests performed for all medicines under analysis (30 observations for
each medicine with a con�dence of 95% (see Appendix A). Each scenario k
of demand for each type of medicine is built through the implementation of
the piecewise thinning algorithm [Ross 1997]. Each scenario k is composed
by the demand generated for each time period.

Given the number of combinations of supplier and medicines, the scenarios for
lead times and costs of medicines were generated according to a speci�c criteria: a
common distribution for each random variable with di�erent parameters for each
combination. A goodness of �t test was performed for all possible combinations (not
all suppliers sell all types of medicines). The uniform distribution (continuous for
cost of medicines and discrete for lead times) was ranked always in the �rst three
positions. For this reason, all combinations of suppliers and medicines were �tted to
a discrete uniform distribution for lead times and a uniform distribution for cost of
medicines. For both random variables a goodness of �t was successfully passed with
con�dence of 95 % for all combinations (not all suppliers sell all types of medicines,
see Appendix A).
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• Lead time of medicines (ltspk). For the lead times, the number of time periods
required for delivering medicines for each supplier and for each medicine is
counted. With this information it was analyzed the ranges of lead times. Each
scenario k of lead time for each supplier s and each medicine p is generated
by a random number generator for the discrete uniform distribution.

• Cost of medicines (csptk). The range of selling prices for each type of supplier
and for each type of medicine has been analyzed. Each scenario k of cost
for each type of medicine, each type of supplier and for each time period is
generated by a random number generator for the uniform distribution. Also,
for the cost of expired medicine (clpsk), it has been generated scenarios by a
random number generator for the uniform distribution.

4.5.2 Results and analysis

Based on the information provided by the hospital, di�erent sample sizes of scenarios
have been generated, for each one of the random elements: medicine demand, lead
time and costs for each time period. The model have been run over a planning
horizon divided into 12 time periods (months). The mathematical model 1 (eq. 4.3
to eq. 4.14) is solved to optimality by using Xpress-MP, version 8.1.

Depending on the number of scenarios the estimated gap and variance of so-
lution obtained are calculated iteratively, based on the framework proposed in
[Shapiro 2008] which estimates an upper bound and a lower bound of the objec-
tive function, this allows to identify the variance obtained and the optimality gap
with respect to the estimation of the value of the objective function. The gap is
de�ned as the di�erence (in percentage) between the upper bound and the lower
bound, therefore the gap is the di�erence between the estimation of the objective
function and the value of the real objective function.

The procedure consists in determine the average solution of the scenarios by
using:

1

M

M∑
m=1

gmM (4.15)

Where M correspond to the scenarios generated and gmM the objective function
of each scenario. The variance is estimated throw:

1

m(m− 1)

M∑
m=1

(gmM − gmM )2 (4.16)

Where gmM corresponds to the average of the objective functions, and the con�-
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dence upper bound: gmM +θα,M−1 ∗variance that corresponds to the upper bound of
the approximation of the objective function. Then, by using the same calculations
and larger scenarios N a lower bound of the objective function is estimated with
gnN + zα ∗ variance2 and the gap comparing these two bounds are obtained with
gmM + θα,M−1 ∗ variance - gnN + zα ∗ variance2.

According to this procedure, �rst 4 and 8 scenarios are tested for estimating
the lower and upper bounds respectively, in this �rst iteration the gap obtained is
18.63%. For the second iteration 8 and 16 scenarios are tested obtaining a gap of
1.84%. Finally, 30 and 60 scenarios are tested obtaining a gap of 0.85%, which is a
satisfactory value of estimation.

The results for the inventory levels for 22 medicines are presented in Figure
4.4. The �gure shows the inventory levels in units for 12 months for each type of
medicine.

Figure 4.4: Inventory levels for each type of medicine in each time period

It can be observed in Figure 4.4 that inventory levels are balanced during the
planning horizon; in other words, the inventory levels are greater than 0 in each
month, and there are not any periods in which there are medicines with inventory
levels equal 0 and other medicines with higher inventory levels. This is due to
the capacity constraints modeled by the equation 4.10 and 4.12 which limit the
quantities that can be purchased from the suppliers; the demand varies in each
time period. In addition, two di�erent indicators have been analyzed: the �rst one
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corresponds to the total amount of emergency purchases made during the planning
horizon, and the second one corresponds to the total amount of expired medicines.
(Table 4.1).

Medicine
Emergency purchases
(number of medicines)

Expired medicines
(number of medicines)

m1 144 0
m2 32 0
m3 11 16
m4 11 6
m5 16 0
m6 721 0
m7 121 0
m8 30 0
m9 0 0
m10 49 0
m11 0 42
m12 0 0
m13 0 0
m14 14 0
m15 26 28
m16 1 0
m17 120 0
m18 139 0
m19 75 0
m20 75 0
m21 116 0
m22 12 0

Table 4.1: Total emergency purchases and expired medicines

In Table 4.1, it can be observed that for 4 di�erent types of medicines (m9, m11,
m12 and m13), emergency purchases are never made. For the rest of the medicines,
the maximum value for the number of emergency purchases comprises 721 units for
medicine 6. In addition, it can be observed that among the di�erent medicines, the
amount of expired medicines does not represent a large number. Only 4 types of
medicines expired (m3, m4, m11 and m15), corresponding to 18% of the medicines.
For the expired medicines, the maximum value, 42 units, was for medicine 11.

Under similar conditions it is compared (taking into account the real data of
hospital), the optimal policy obtained by the model proposed (eq. 4.3 to eq. 4.14)
with the policy used by the hospital. These results are summarized in Table 4.2 (For
con�dential reasons the results are presented in cost units (CU)); for each medicine,
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the �rst data column displays the cost (CU) associated with the decisions of the
hospital for each medicine, the second column presents the cost in CU associated
with the optimal policy obtained from the mathematical model (de�ned as C-policy),
and the third column presents the di�erence between these two values.

Medicine Real (CU) C-policy (CU) Di�erence (%)
m1 624 602 3.58%
m2 942 472 49.91%
m3 537 488 9.26%
m4 1129 1126 0.26%
m5 24 21 11.48%
m6 2927 2987 -2.07%
m7 36 26 28.24%
m8 367 276 24.77%
m9 64 57 11.06%
m10 524 540 -3.11%
m11 156 121 22.19%
m12 592 431 27.24%
m13 312 202 35.28%
m14 5716 5834 -2.07%
m15 780 724 7.15%
m16 1312 785 40.15%
m17 966 1084 -12.24%
m18 76 75 1.24%
m19 93643 74230 20.73%
m20 16309 16372 -0.39%
m21 5431 5023 7.52%
m22 211 160 23.96%
Total 132675 111634 15.86%

Table 4.2: Comparison between real situation and optimal policy

It can be concluded that for most of the medicines (17), the optimal policy
obtained from the mathematical model improves the supply policy in the hospital.
Considering the 22 medicines, it is possible to reduce the total costs of the managing
of medicines by 15.86%. For 17 of the 22 medicines there was a reduction of costs
of 20.16%, representing a savings of $85667 US dollars. For 5 medicines there was
an increase of costs of 1.42%, representing an increase of $1505 US dollars.

4.5.3 Simulation analysis

416 scenarios of the random elements have been simulated: demand, lead times and
costs, for each one of the 22 di�erent types of medicines in order to evaluate the
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performance of the optimal policy obtained by the mathematical model (eq. 4.3 to
eq. 4.14) over these scenarios. The results are shown in Table 4.3.

]

Table 4.3: Optimal policy performance over the simulated scenarios

The results presented in Table 4.3 correspond to three di�erent key performance
indicators: (i) the number of scenarios with stockout, which in this case corresponds
to the emergency purchases, (ii) the average number of stockouts and (iii) the average
inventory levels. In the �rst case, in 50% of the medicines, the results provided by
the mathematical model allow not having stockouts, thereby minimizing the total
costs of emergency purchases for medicines. This analysis is related to the second key
performance indicator: for the 12 medicines that contain scenarios with stockouts,
the average number of stockouts is 26.25 units. In the current situation of the
hospital, the number of emergency purchases for some medicines can be greater than
300 units, the optimal policy obtained by the model allows reduce the emergency
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purchases which can be up to 500% of the regular value. Inventory levels are on
average consistent with those presented in Figure 4.4.

Finally, in Figure 4.5, the comparison of the three indicators (the total amount
of inventory levels, the total amount of expired medicines and the total amount
of emergency purchases) is developed with the results of the three policies: the
hospital policy, the optimal policy evaluated over the real data and the optimal
policy evaluated over the simulated data.

Figure 4.5: Comparison of policies

Note that for the optimal policy evaluated on both real and simulated data all
three indicators: inventory levels, total of the expired medicines and emergency
purchases are lower than the hospital policy (R,Q). For this reason, with the math-
ematical model, the replenishment decisions can be improved in terms of costs of
inventory management, expired medicines management and emergency purchases
management. The results can be used as an input of the ERP system support-
ing decision of purchases allowing a reduction of emergency purchases and expired
medicines.
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4.6 Multi-objective model to determine the acceptable

expiration dates

Another problem faced by the hospital is the amount of expired medicines. The
expiration date is only known when the medicines are received, not during negotia-
tions for the supply. For this reason, considering the uncertainties mentioned above,
it is important to determine an acceptable expiration date for each type of medicine.
Based on the previous model and with the main objective of determining the max-
imum expiration date medicines should have for the hospital to accept them and
for minimizing the number of expired medicines, a second mathematical model have
been developed where the objective is composed of two di�erent objective functions
that contrast the amount of expired medicine with the expiration date obtained by
the model.

To develop the second mathematical model, two new decision variables, ztpj and
QF lkpt are introduced:

Variables

ztpj

{
1 if in the time period t,medicine with expiration date j is accepted where j ∈ T
0 otherwise

QF lkpt Quantity of medicine p with age l ∈ L expired in time period t in
scenario k

Objective functions

1. Value of the expiration date

Min z1 =
∑
p∈P

∑
j∈T |j≥t

∑
t∈T

(l − t) ∗ ztpj

2. The amount of expired medicines

Min z2 =
1

|K|
∑
p∈P

∑
k∈K

∑
l∈L

∑
t∈T

QF lkpt

New constraints

1. Inventory levels including the expired medicines

IP lkpt = IP l−1kpt−1 −RP
lk
pt −QF lkpt ∀t,∀p,∀l|l ≤ t,∀k

IP lkpt =
∑
s∈S

lsp ∗Qspt−ltspk −RP
lk
pt −QF lkpt ∀t,∀p,∀l = 1, ∀k
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2. Each lot of medicine has an unique expiration date

∑
j∈T |j≥t

ztpj ≤ 1 ∀t,∀p

3. If the expiration date of medicines is not established, an order for medicines
cannot be placed

Qspt ≤M ∗
∑
j∈T

ztpj ∀t,∀p, ∀s

4. The following equations represent the age based constraints. To guarantee
the relationship between the quantity of expired medicines and the binary variable
ztpj . It establishes that when the value of the binary variable is one, it determines
the end of life for a certain type of medicine; then, when this age is reached, the
amount of expired medicines is equal to the inventory of medicines with the same
age. For example, z432 = 1 indicates that a lot of medicine 3 is accepted in period 2
and expires in period 4 (therefore, the age will be 3 months in period 4); the amount
of medicines expired is represented by QF (t2−l+1)k

34 , where (t2-j+1)=(4-2+1)=3 and
the amount of inventory subtracted is IP 3k

34 , denoting a relationship in which the
quantity expired will be the amount of inventory accepted in a previous period of
time with a speci�c expiration date. In addition, in a speci�c time period, there is
only one possibility for a speci�c age; for example, in period t=5, a medicine with
age l=3 is the medicine whose purchase was made two previous periods earlier in
period t=3. When the binary variable is activated, the amount of expired medicines
has two bounds:

The lower bound

QF
(t2−j+1)k
pt ≥ IP (t2−j+1)k

pt −M∗(1−zt2pj) ∀t,∀p,∀j|j ≤ t,∀t2 ∈ T |t2 ≥ j, t2 = 1...t,∀k

The upper bound:

QF
(t2−j+1)k
pt ≤ IP (t2−j+1)k

pt ∀t,∀p, ∀j|j ≤ t,∀t2|t2 ≤ j, t2 = 1...t,∀k

5. The bound of variables are modeled by the following equations
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QF lkpt ≥ 0 ∀t,∀p,∀l,∀k
Qspt ≥ 0 ∀t,∀p,∀s

IP lkpt ≥ 0, RP lkpt ≥ 0 ∀t,∀p,∀l,∀k
QF lkpt , IP

lk
pt , RP

lk
pt , Q

s
pt ∈ Z

ztpj ∈ {0, 1}

The multi-objective mathematical model for acceptable expiration dates under
uncertainty contains the above equations and the equations 4.6- 4.14 of the �rst
model(Section 4.5). This model can be summarized as follows:

Min z1 =
∑
p∈P

∑
j∈T |j≥t

∑
t∈T

(l − t) ∗ ztpj (4.17)

Min z2 =
1

|K|
∑
p∈P

∑
k∈K

∑
l∈L

∑
t∈T

QF lkpt (4.18)

Subject to:

IP lkpt = IP l−1kpt−1 −RP
lk
pt −QF lkpt ∀t,∀p,∀l|l ≤ t,∀k (4.19)

IP lkpt =
∑
s∈S

lsp ∗Qspt−ltspk −RP
lk
pt −QF lkpt ∀t,∀p,∀l = 1, ∀k (4.20)

∑
j∈T |j≥t

ztpj ≤ 1 ∀t,∀p (4.21)

Qspt ≤M ∗
∑
j∈T

ztpj ∀t,∀p,∀s (4.22)

QF
(t2−j+1)k
pt ≥ IP (t2−j+1)k

pt −M∗(1−zt2pj) ∀t,∀p,∀j|j ≤ t,∀t2 ∈ T |t2 ≥ j, t2 = 1..t,∀k
(4.23)

QF
(t2−j+1)k
pt ≤ IP (t2−j+1)k

pt ∀t,∀p,∀j|j ≤ t,∀t2|t2 ≤ j, t2 = 1...t,∀k (4.24)
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Ikpt =
∑
l∈1..t

IP lkpt ∀t,∀p,∀k (4.25)

Rkpt =
∑
l∈1..t

RP lkpt ∀t,∀p,∀k (4.26)

Qspt ≤M ∗ yspt ∀t,∀p,∀s (4.27)

yspt ≤ avsp ∀t,∀p,∀s (4.28)

∑
p∈P

∑
s∈S

utp ∗ lsp ∗Qspt ≤ cap ∀t (4.29)

Rkpt + lsp ∗ EQpt = dptk ∀t,∀p,∀k (4.30)

∑
p∈P

∑
s∈S

yspt ≤ mna ∀t (4.31)

RP lkpt = 0 ∀t,∀p,∀l|t− l > lcp − 1, ∀k (4.32)

QF lkpt , IP
lk
pt ≥ 0, RP lkpt ≥ 0 ∀t,∀p,∀l,∀k

Ikpt ≥ 0, Rkpt ≥ 0 ∀t,∀p,∀k
Qspt ≥ 0 ∀t,∀p,∀s
EQpt ≥ 0 ∀t,∀p

QF lkpt , IP
lk
pt , RP

lk
pt , I

k
pt, R

k
pt, Q

s
pt, EQpt ∈ Z

ztpj , y
s
pt ∈ {0, 1} (4.33)

4.6.1 Results and analysis

To determine the maximum expiration date medicines should have for the hospital
to accept them, for each medicine, two objective functions were formulated (equa-
tions 4.17 and 4.18 ). These two objectives are contradictory because the minimum
expiration date is 0, but there will be an increment in the expired medicines and
the maximum expiration date is 12 (months), where there will be a minimization of
expired medicines. To solve this situation the epsilon-constraint strategy have been
used [Haimes 1971] for each type of medicine. The procedure consists of optimizing



84

Chapter 4. Optimization under uncertainty of the pharmaceutical

supply chain in hospitals

each objective function separately, with the objective of �nding the two extreme
points of the Pareto frontier.

In Figure 4.6 it can observed the results of the model for a single type of
medicine (3). The solution presented can be used by decision makers to accept a
reasonable expiration date. It is clear that the ideal solution is that the amount of
expired medicines will be zero. This can occur with a long expiration date, in this
case 12 months, which is the same as the planning horizon. As mentioned before,
the expiration dates are only known when the product is delivered by suppliers,
but in this case, for negotiation, hospitals can refuse to accept the medicines if the
expiration date is not appropriate for the objectives of the hospital. This solution can
give to the hospital an initial idea of the acceptable date of expiration for medicines;
nevertheless, it is necessary to have other additional criteria that contrast with the
results related to the quantity of expired medicine because otherwise, the best results
will be to accept only medicines with expiration dates of 12 months or more. Thus,
before balancing inventory levels, the models presented should consider the demand
and the expiration dates. Therefore, in cases where the expiration dates are short
compared to the planning horizon, the inventory tends to be zero because all the
medicines that are not used to satisfy the demand are lost.

Figure 4.6: Pareto frontier O.F 1 versus O.F 2
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The comparison between the levels of expired medicines and inventory levels are
presented in Figure 4.7.

Figure 4.7: Contrast of pareto frontier versus inventory levels

The blue curve represents the expired medicine, for which the scale of units is
on the left-hand side of the �gure. The orange curve represents the inventory levels,
for which the scale of units is on the right-hand side of the �gure. It can be observed
that while the quantity of expired medicine decreases through the increments of the
expiration dates, the inventory levels increase. Considering the behavior of these
two variables, it is a fact that there are some points where the lines change their
behavior; for inventory levels, there are always increasing values, and for expired
medicine, there are decreasing values. Even the scales showing the results of these
two variables are di�erent. It can be observed that in 6 months, there is a point
at which the two graphs converge, presenting a breakpoint where they change their
behavior. Even though the �nal decision depends on the decision makers, based on
the results of this model, an acceptable decision that generates a balance between
expired medicines and inventory levels is to accept medicines with expiration dates
of at least 6 months: with this decision, less than 100 units of expired medicines are
obtained and the inventory levels are not greater than 2000 units.

4.7 Conclusions

This chapter proposes the use of a simulation-optimization approach based on the
stochastic counterpart or sample path method for solving pharmaceutical logistics
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problems under uncertainty in hospitals. Based on this approach, two mathematical
models based on a real case considering di�erent sources of uncertainty and other
elements related with legal regulations have been proposed. The �rst model deter-
mines the amount of medicines that must be purchased from a speci�c supplier in a
speci�c time period, considering constraints of age based inventory, human resource
capacities and service level. The model aims to minimize the overall costs of man-
aging medicines in hospitals, considering that the the demand, lead times and cost
of medicines are random. The second model determines an acceptable expiration
date of medicines in order to minimize the amount of expired medicines.

The results of the mathematical model have been evaluated over real data and
simulated scenarios. The solution obtained by the model was compared with the
policy used by the hospital under similar conditions (taking into account the real
data of hospital). The results show that in most of the cases (17 of 22 medicines),
the results of the supply and managing of medicines were improved, and if the policy
obtained by the model proposed were implemented, considering the 22 medicines,
it would be possible to reduce the total costs of the managing of medicines by
15.86%. The optimal policy evaluated on both real and simulated data shows better
performances for three indicators (inventory levels, total of the expired medicines
and emergency purchases) than the hospital policy.

These models can help to de�ne policies for negotiation with medicine suppliers
in terms of the medicines' expiration dates, emergency purchases prices and lead
times, thereby enabling more cost savings. Future work will include the development
of algorithms to allow the inclusion of larger scale of type of medicines and other
approaches to model the uncertainties. Finally, the study of high costs of medicines
is also necessary in order to improve supply chain management.
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This chapter presents two mathematical models to optimize the process related
to unit-doses and prescriptions management and distribution in a network of hos-
pitals where also a location-allocation of pharmacy robots decisions are evaluated.
The �rst one a deterministic model that considers the real operational constraints of
the process of preparing and distributing unit-doses (WHO requirement) and pre-
scriptions. The second one a stochastic model in which the uncertainty of demand
of medicines and the multi-source resilience strategy are considered. The uncer-
tainty of the demand of medicine is included by using the p-robustness approach
that combines the minimization of the expected cost and the minimization of the
worst case or regret. The multi-source resilience strategy is considered to avoid the
risk of centralized distribution processes in a very sensitive network managing the
demand of medicines and prescriptions.
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5.1 Introduction

Access to medicines and reliability in the pharmaceutical requirements of pa-
tients is one of the most important challenge in primary healthcare. To deal
with this, automation technologies have become a support in the pharmaceuti-
cal services that helps hospitals to minimize human errors, minimize costs and
improve e�ciency of processes. In this way, the term pharmacy automation ap-
pears as the process of automating the routine tasks performed in pharmacies
[Ahadani 2012] [Altawalbeh 2018]. The related work within pharmacies consists
in storing medicines, making unit-doses, preparing prescriptions and delivering pre-
scriptions to patients. Critical errors may occur during the two last steps. Au-
tomatic dispensing systems is an innovative tool that allows hospitals not only to
satisfy requirements of patients but also optimize the distribution of medicines across
a network of interconnected facilities [Spinks 2017].

In this context the main purpose of this chapter is to develop mathematical mod-
els to determine the location of di�erent types of robots (cutting storage preparing
unit doses and prescriptions) in a network of hospitals and the allocation of hospi-
tals for satisfy the requirements of patients considering uncertainty in demand and
a multi-source resilience strategy.

5.2 Background

Location-allocation problems solution approaches and applications have been
widely studied in the scienti�c literature [Murat 2011], [Karatas 2018] and
[Ortiz-Astorquiza 2017]. An application of location and reorganization in health
systems is developed in [Guerriero 2016]. This paper presents a real application in
a healthcare system in Italy. Two problems are considered: (i) healthcare reorga-
nization problem considering regional guidelines that aim to replace some ordinary
admissions by ambulatory or home cares and (ii) build a new model that considers
the demand satisfaction and the increasing of the hospital capacity. A similar work
is proposed in [Shari� 2012].

A location-allocation model under uncertainty for hospital network planning is
proposed in [Mestre 2014]. The total cost of the network of hospitals is minimized
as the expected distance to facilities. The authors developed a two-stage model: the
�rst stage is limited to decisions related to location and the second stage involves
location and allocation decisions. This model is applied to a real case in Portugal
with two types of hospitals: non-specialized hospitals close to the population and
high specialized ones that could stand far from the demand.

A similar two-stage approach is developed in [Karamyar 2016]. The main idea is
to determine the hospital location, then the allocation of services and machines and
�nally assign patients to services. The authors proposed a bi-objective robust model
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assuming that costs are uncertain. Other multi-objective models are applied to the
location and sizing of medical departments in a hospital network in [Zhang 2016]
and [Stummer 2004]. A similar problem is studied in [Coskun 2010] for emergency
medical service stations.

A robust approximation for a multi-period location-allocation problem of phar-
maceutical centers is proposed in [Haji abbas 2016]. A multi-objective model is
used by considering the minimization of costs and the maximization of customer's
satisfaction. Epsilon constraint approach is used for solving the bi-objective model.
The robustness is considered regarding the uncertainty in demand.

A healthcare application applied to emergency response in case of disaster is de-
veloped in [Pietz 2009]. A hybrid model is presented combining a simulation model
and a nonlinear optimization model of the assignment of workers to workstations
which is solved by simulation and a heuristic optimization algorithm. Decisions
are related to the locations for dispensing aids and the design of the logistics to
supply the demand. A review for location problems in emergencies is presented in
[Boonmee 2017].

In [Bowers 2015] is proposed a model to locate services in a musculoskeletal
physiotherapy department in which the patient behavior is modeled using heuristics
such as preferences of locations of services and heterogeneity of patients. The model
considers the individuality of patients along with the availability of resources. It
uses simulation where scenarios correspond to di�erent con�gurations of services.
Several applications of facility location and extension are presented in these two
surveys [Ahmadi-Javid 2017], [Güne 2015]. [Chauhan 2016] present an application
of location for waste material in healthcare.

There are some recent developments in location problems. A combined prob-
lem of location and routing problem is de�ned in [Nedjati 2017] and solved with
a genetic algorithm. Approximate dynamic programming is used for solving a
stochastic location problem in [Meissner 2018], the problem consists in determine
the optimal policy that indicates the sources and destinations of transhipment
under stochastic demand. Other applications for di�erent variants of location-
allocation problems can be found in [Gokbayrak 2017], [Mogale 2018], [Saghiri 2018]
and [Gha�arinasab 2018].

5.3 Methods

In this chapter the problem addressed correspond to location-allocation of phar-
maceutical robots (strategic) that prepares prescriptions and unit-doses to be dis-
tributed over a network of hospitals, once the problem of location-allocation is
solved, the second problem consists in determine the distribution network (oper-
ational), in order to distribute medicines (unit-doses and/or prescriptions) for those
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hospitals who can't produce it.

The methodology used to address this problem consist in the development of
two mathematical models: (i) a deterministic model and (ii) stochastic p-robustness
model. For the deterministic mathematical model, the operational constraints re-
lated to preparation and distribution of unit-doses and prescriptions were built based
on the requirements and guidelines of the network of hospitals. Based on the �rst
model, a stochastic model is proposed considering (i) the variability of the demand
using a p-robustness level and generating scenarios of demand of medicines. The
scenarios are built based on the information provided by the network of hospitals in
relation of how is expected to increase/decrease the demand (+-30% in the planning
horizon of 7 years) and (ii) the multi-source resilience strategy to avoid the risk of
centralized distribution process in a very high and sensitive distribution network.
The methodology used in this work is presented in Figure 5.1.

Figure 5.1: Methodology

P-Robustness method

The main idea of the p-robust optimization method is to combine the bene�ts
of stochastic optimization and robust optimization by minimizing the expected cost
and min-max cost or regret by looking for the maximal expected pro�t solution
that can be de�ned as p-robust [Mazidi 2019], [Snyder 2006]. Any problem can be
de�ned as p-robust if it satis�ed the following constraint ( 5.1) :
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Z∗s − Zs(X)

Z∗s
≤ p (5.1)

Where Z∗s is the optimal objective function for each scenario s ∈ S,Zs(X) the
objective function of a feasible vector X under scenario s and p the desired p-
robustness level. The left part of the equation is the relative regret.

5.4 Mathematical models

5.4.1 Problem description

The optimization problems considered in this chapter are modeled as an extension
of a location-allocation considering distribution of unit-doses and prescriptions de-
cisions. The objective function consists in determining the best location and alloca-
tion of di�erent types of pharmaceutical robots for a network of hospitals minimizing
the total costs over the planning horizon. Three types of robots are considered: (i)
robots that process medicines from suppliers and produce unit-doses (i.e. medicines
are extracted from their boxes and cut into unit-doses) named cutting robots; (ii)
storage robots that store unit-doses, and (iii) prescription robots that process unit-
doses to compose personalized prescriptions depending on patient requirements (i.e.
unit-doses of di�erent medicines are grouped together in a plastic bag to compose a
prescription) . Storage and prescription robots can be bought with di�erent settings,
i.e. di�erent costs and capacities. Each hospital of the network can have robots of
each type. The general process to satisfy the demand of prescriptions is presented
in Figure 5.2.

Figure 5.2: Description of the general process of preparing prescriptions
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Hospitals treat patients and in some cases pharmacies allocate robots for prepar-
ing prescriptions. When a requirement of medicines is identi�ed the demand of
patient is converted into a recipe of medicines required to the personnel in charge
of preparing these recipes. In parallel this area cut the medicines to prepare unit-
doses to distribute to patients. When a requirement of speci�c medicines is made,
the robot that prepares prescriptions collect a number of unit-doses in the storage
area and put into a single package to be distributed.

Figure 5.3 shows an illustrative example of this process, considering a network
of three hospitals H1, H2 and H3, dotted line arrows represent unit-doses �ows
whereas hard line arrows represent prescription �ows. The network design is: H1
has one cutting robot producing unit-doses (R1), one prescription robot (R2) and
one storage robot (R4); H2 has one prescription robot (R3) and one storage robot
(R5); H3 has no robots. The distribution plan is: H1's robot R1 produces unit-doses
for H1 (stored in R4) and H2 (stored in R5); H1's robot R2 produces prescriptions
for H1 only. Unit-doses are distributed from H1 to H2. H2's robot R3 produces
prescriptions using unit-doses received from H1 for H2 and H3. Prescriptions are
distributed from H2 to H3.

Figure 5.3: Illustrative example of a con�guration of network design

In this problem two types of decisions are considered: (i) the number of robots of
each type to locate in each hospital, and (ii) the distribution �ow over the network
(i.e. which hospitals provide unit-doses and/or prescriptions for which hospital).
Based on this two mathematical models are proposed. In the �rst one the demand
for medicines for each hospital is deterministic whereas in the second model this
demand is stochastic.
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5.4.2 Assumptions

The proposed mathematical models were built considering the information provided
by the manager of the hospital and the chief of the pharmacy area by using their
own estimations and guidelines.

The following are the assumptions considered in this approach for both mathe-
matical models:

• Assumption A1: In the deterministic model the demand is assumed to be
constant over the planning horizon

• Assumption A2: Decisions are strategic based on an investment horizon of 7
years

• Assumption A3: The utilization rate of robots is �xed to 70% assuming some
interruptions and maintenance

• Assumption A4: There aren't considerations about network disruptions
(ie:failures of robots, road breaks..)

• Assumption A5: The processing times of robots are assumed to be constant

• Assumption A6: The di�erent costs are assumed to be constant over the
planning horizon considered

• Assumption A7: The daily and annual opening times of hospitals are assumed
to be constant over the planing horizon

5.4.3 Deterministic model

The deterministic mathematical model is formulated by the following elements:

Sets

i Set of hospitals, i ∈ H = {1,2,...,H}

pm Set of con�gurations of prescription robots, pm ∈ PM = {1,2,...,PM}

sm Set of con�gurations of storage robots, sm ∈ SM = {1,2,...,SM}

Parameters

UR Utilization rate of robots

TCUij Distribution costs of unit-doses between hospitals

TCPij Distribution costs of prescriptions between hospitals
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OPi Annual opening hours per hospital

Di Requirements of unit-doses per year in each hospital

PU Price of unit-doses (cutting)

DHi Number of daily working hours per hospital

CapPPpm Capacities of preparing prescriptions per con�guration

CostPPpm Cost of prescription robots for each con�guration

Am Years of investment

UDPi Number of unit-doses per prescription in each hospital

CapSsm Storage capacity of each con�guration

CostSsm Cost of storage robots for each con�guration

CostC Unitary cost of cutting robots

CapProd Capacity of cutting robots

M Big number

Variables

Aij Number of unit-doses distributed each year between hospitals i
and j

Bij Number of prescriptions distributed each year between hospitals
i and j

Ni Number of cutting robots in each hospital

DMpmi Number of prescriptions robots per con�guration in each hospital

SMsmi Number of storage robots per con�guration in each hospital

xij

{
1 if there is distribution of unit-doses between hospitals i and j
0 otherwise

yij

{
1 if there is distribution of prescriptions between hospitals i and j
0 otherwise

In this case xij and yij are the variables related with the allocation
of hospitals
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Objective

The objective function minimizes the overall costs composed by (i) cutting costs,
(ii) distribution costs and (iii) investment costs. Cutting costs represents the cost of
producing unit-doses. Distribution cost is composed by costs of distribution of unit-
doses and costs of distribution of prescriptions. The investment cost is composed
by costs of prescription/storage robots and cost of unit-doses robots. This objective
function is de�ned by the following equation:

Min z = PU ∗Am ∗
∑
i∈H

∑
j∈H

Aij +
∑
i∈H

∑
j∈H

(TCUij ∗Am ∗ xij + yij ∗Am ∗ 2 ∗ TCPij) +

∑
pm∈PM

∑
i∈H

CostPPpm ∗DMpmi +
∑

sm∈SM

∑
i∈H

CostSsm ∗ SMsmi +
∑
i∈H

CostC ∗Ni

Constraints

1. The cutting robots are enough to satisfy the distribution of unit-doses between
hospitals.

Ni ∗ CapProd ∗OPi ∗ UR ≥
∑
k∈H

Aik ∀i ∈ H

2. The robots for preparing prescriptions in each hospital are enough to satisfy
the prescriptions distributed between hospitals (the capacity of prescriptions for
each type of robot is expressed in terms of unit-doses).

∑
pm∈PM

CapPPpm ∗DMpmi ∗OPi ∗ UR ≥
∑
k∈H

Bik ∗ UDPk ∀i ∈ H

3. Storage capacity. Each hospital must guarantee at least �ve days of distribu-
tion of unit-doses. Prescriptions contain a certain number of unit-doses.

∑
sm∈SM

CapSsm ∗ SMsmi ≥
∑
j∈H

Aij ∗ (
5

365
) ∀i ∈ H

4. Balancing the number of unit-doses received and the number of unit-doses
dispatched in terms of prescriptions for each hospital.

∑
j∈H

Aji =
∑
j∈H

Bji ∗ UDPj ∀i ∈ H
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5. For each hospital there must be at most the same number of prescription
robots and storage robots because the storage robots are join to the prescription
robots.

∑
pm∈PM

DMpmi ≤
∑

sm∈SM
SMsmi ∀i ∈ H

6. The satisfaction of demand in terms of unit-doses.

∑
i∈H

UDPj ∗Bij ≥ Dj ∀j ∈ H

7. Relationship between the binary variables of distribution of unit-doses and
prescriptions with the integer variables of distribution of unit-doses and prescrip-
tions.

Aij ≤M ∗ xij ∀i, j ∈ H

Bij ≤M ∗ yij ∀i, j ∈ H

8. Distribution of unit-doses is not allowed in two directions, this means that a
hospital can supply other hospital, but the supplied hospital cannot supply in return
the previous one.

xji ≤ 1− xij ∀i, j ∈ H|i <> j

9. For medicines �ow requirements, each hospital can only receive unit-doses
from only one hospital.

∑
i∈H

xij ≤ 1 ∀j ∈ H

10. Each hospital can only receive prescriptions for at most one hospital or by
itself.

∑
i∈H|i<>j

yij ≤ 1 ∀j ∈ H

11. The capacity of cutting robots in terms of unit-doses is enough for the daily
demand of unit-doses.

CapProd ∗Ni ∗DHi ∗ UR ≥
1

365
∗
∑
j∈H

Aij ∀i ∈ H
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12. Each hospital only can satisfy its own demand if prescription robots are
located there.

∑
i∈H|i=j

yij ≤
∑

pm∈PM
M ∗DMpmj ∀j ∈ H

13. Distribution of unit-doses can only be made by hospitals that locate cutting
robots in their own hospitals.

CapProd ∗Ni ≥
∑
j∈H

Aij ∀i ∈ H

14. Distribution of prescriptions can only be made by hospitals in which pre-
scription robots are located.

∑
pm∈PM

DMpmi ≥
∑
j∈H

Bij ∀i ∈ H

15. For each hospital that distribute prescriptions there are enough daily capac-
ity to ensure at least 4 days of making prescriptions.

∑
pm∈PM

CapPPpm ∗DMpmi ∗DHi ∗ UR ≥
∑
j∈H

Bij ∗
4

365
∀i ∈ H

16. The domain de�nition of variables.

Aij , Bij , Nh, DMpmi, SMsmi ≥ 0; xij , yij ∈ {0, 1}
Aij , Bij , Nh, DMpmi, SMsmi ∈ Z
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The deterministic model for location of pharmaceutical robots, allocation of
hospitals and distribution of unit-doses and prescriptions is summarized as follows:

Min z = PU ∗Am ∗
∑
i∈H

∑
j∈H

Aij +
∑
i∈H

∑
j∈H

(TCUij ∗Am ∗ xij + yij ∗Am ∗ 2 ∗ TCPij) +

∑
pm∈PM

∑
i∈H

CostPPpm ∗DMpmi +
∑

sm∈SM

∑
i∈H

CostSsm ∗ SMsmi +
∑
i∈H

CostC ∗Ni (5.2)

Subject to:

Ni ∗ CapProd ∗OPi ∗ UR ≥
∑
k∈H

Aik ∀i ∈ H (5.3)

∑
pm∈PM

CapPPpm ∗DMpmi ∗OPi ∗ UR ≥
∑
k∈H

Bik ∗ UDPk ∀i ∈ H (5.4)

∑
sm∈SM

CapSsm ∗ SMsmi ≥
∑
j∈H

Aij ∗ (
5

365
) ∀i ∈ H (5.5)

∑
j∈H

Aji =
∑
j∈H

Bji ∗ UDPj ∀i ∈ H (5.6)

∑
pm∈PM

DMpmi ≤
∑

sm∈SM
SMsmi ∀i ∈ H (5.7)

∑
i∈H

UDPj ∗Bij ≥ Dj ∀j ∈ H (5.8)

Aij ≤M ∗ xij ∀i, j ∈ H (5.9)

Bij ≤M ∗ yij ∀i, j ∈ H (5.10)

xji ≤ 1− xij ∀i, j ∈ H|i <> j (5.11)

∑
i∈H

xij ≤ 1 ∀j ∈ H (5.12)

∑
i∈H|i<>j

yij ≤ 1 ∀j ∈ H (5.13)
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CapProd ∗Ni ∗DHi ∗ UR ≥
1

365
∗
∑
j∈H

Aij ∀i ∈ H (5.14)

∑
i∈H|i=j

yij ≤
∑

pm∈PM
M ∗DMpmj ∀j ∈ H (5.15)

CapProd ∗Ni ≥
∑
j∈H

Aij ∀i ∈ H (5.16)

∑
pm∈PM

DMpmi ≥
∑
j∈H

Bij ∀i ∈ H (5.17)

∑
pm∈PM

CapPPpm ∗DMpmi ∗DHi ∗ UR ≥
∑
j∈H

Bij ∗
4

365
∀i ∈ H (5.18)

Aij , Bij , Nh, DMpmi, SMsmi ≥ 0; xij , yij ∈ {0, 1}
Aij , Bij , Nh, DMpmi, SMsmi ∈ Z (5.19)

5.4.4 Stochastic model

According to She� [She� 2005], Nemeth [Nemeth 2008] and Mensah[Mensah 2014]
resilience in supply chains is de�ned as the ability of organizations to bounce back
from large scale disruptions such as random events, accidents, negligence, intentional
disruptions, natural disasters or or technological threats (e g equipment breakdown).

One of the most common resilience strategy referenced in the literature to reduce
the risk of disruption is the multiple sourcing [Namdar 2017].This strategy has been
adopted in the stochastic model by adding additional constraints in order to avoid
centralized solutions increasing the �exibility in the distribution of medicines. An
example of this resilience strategy is shown in �gure 5.4, where two di�erent types
of con�gurations can be observed, the �rst one a very centralized con�guration in
which the location of robots is over a single hospital and in the second one the
con�guration of the network is split over three hospitals allowing to react in case
of a disruption over the network. In this �gure the triangles represent the hospitals
in the network while dotted lines represents the distribution of unit-doses and lines
represents the distribution of prescriptions. Each hospital where are located robots
can satisfy its own demand and the demand of hospitals assigned.



100

Chapter 5. Resilent network design under uncertainty in a

location-allocation of hospital pharmacy robots

Figure 5.4: Concept of resilience strategy used in this work

Since decisions of purchasing robots are made on a strategic level, the uncer-
tainty in demand is considered as a factor of analysis. The concept of p-robustness
presented in section 5.3 has been added and modi�ed by including in the objective
function the new terms related to the uncertainty and including the scenarios of
the demand and the p-robust constraint ensuring a p-robust desire level. The new
terms added to the mathematical model presented in subsection 5.4.3 and based
on the concept of p-robustness [Snyder 2006] and non-scenario dependent modeling
[Mestre 2014] is as follows:

Sets

Additionally to the sets used in the deterministic model (section 5.4.3), the
stochastic model use the following sets:

scn Set of scenarios of variation of demand sm ∈ SM = {1,2,...,SCN}

Parameters

Additionally to the parameters used in the deterministic model (section 5.4.3),
the stochastic model use the following parameters:

p Desired robustness level
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Dscn Requirements of unit-doses by hospital in each scenario

qscn Probability that a scenario occurs

z∗scn Optimal objective value of the location-allocation of robots for
scenario scn

Variables

The variables used in the stochastic model are the same of the deterministic
model (section 5.4.3).

Objective

The new objective function minimizes the expected distribution cost and the
cost of location of robots overall scenarios.

Min z =
∑

scn∈SCN

qscn[
∑
i∈H

∑
j∈H

PU ∗ Am ∗ Aij +
∑
i∈H

∑
j∈H

(TCUij ∗ Am ∗ xij + yij ∗ Am ∗ 2 ∗

TCPij) +
∑

pm∈PM

∑
i∈H

CostPPpm ∗DMpmi +
∑

sm∈SM

∑
i∈H

CostSsm ∗ SMsmi +
∑
i∈H

CostC ∗Ni]

Constraints

1. Constraints 5.24 to 5.42 are similar to equations 5.3 to 5.19 of the discrete
model except for variables having the index of scenarios of demand:

∑
i∈H

UDPj ∗Bij ≥ Dscn ∀j ∈ H,∀scn ∈ SCN

2. The p-robustness condition that is a measure that combines the minimization
of the expected costs and the minimization of the worst-case cost or relative regret.
It is mandatory to compute the optimal solution for each scenario to use the concept
of p-robustness.

∑
i∈H

∑
j∈H

PU ∗Am ∗Aij +
∑
i∈H

∑
j∈H

(TCUij ∗Am ∗ xij + yij ∗Am ∗ 2 ∗ TCPij) +

∑
pm∈PM

∑
i∈H

CostPPpm ∗DMpmi +
∑

sm∈SM

∑
i∈H

CostSsm ∗ SMsmi +
∑
i∈H

CostC ∗Ni ≤ (1 + p) ∗ z∗scn
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3. The multi-source resilience strategy is modeled by adding constraints to the
model that guarantees to have at least two hospitals where robots are located.

∑
pm∈PM

DMpmi ≥ 1 ∀i ∈ H|i = bigger hospitals

The stochastic mathematical model for location of pharmaceutical robots, al-
location of hospitals and distribution of unit-doses and prescriptions considering
uncertainty of demand of medicines and resilience is summarized as follows:

Min z =
∑

scn∈SCN

qscn[
∑
i∈H

∑
j∈H

PU ∗ Am ∗ Aij +
∑
i∈H

∑
j∈H

(TCUij ∗ Am ∗ xij + yij ∗ Am ∗ 2 ∗

TCPij) +
∑

pm∈PM

∑
i∈H

CostPPpm ∗DMpmi +
∑

sm∈SM

∑
i∈H

CostSsm ∗SMsmi +
∑
i∈H

CostC ∗Ni](5.20)

Subject to:

∑
i∈H

∑
j∈H

PU ∗Am ∗Aij +
∑
i∈H

∑
j∈H

(TCUij ∗Am ∗ xij + yij ∗Am ∗ 2 ∗ TCPij) +

∑
pm∈PM

∑
i∈H

CostPPpm ∗DMpmi +
∑

sm∈SM

∑
i∈H

CostSsm ∗ SMsmi +
∑
i∈H

CostC ∗Ni ≤ (1 + p) ∗ z∗scn

(5.21)

∑
i∈H

UDPj ∗Bij ≥ Dscj ∀j ∈ H,∀sc ∈ SC (5.22)

∑
pm∈PM

DMpmi ≥ 1 ∀i ∈ H|i = biggest hospitals (5.23)

Ni ∗ CapProd ∗OPi ∗ UR ≥
∑
k∈H

Aik ∀i ∈ H (5.24)

∑
pm∈PM

CapPPpm ∗DMpmi ∗OPi ∗ UR ≥
∑
k∈H

Bik ∗ UDPk ∀i ∈ H (5.25)

∑
sm∈SM

CapSsm ∗ SMsmi ≥
∑
j∈H

Aij ∗ (
5

365
) ∀i ∈ H (5.26)

∑
j∈H

Aji =
∑
j∈H

Bji ∗ UDPj ∀i ∈ H (5.27)
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∑
pm∈PM

DMpmi ≤
∑

sm∈SM
SMsmi ∀i ∈ H (5.28)

∑
j∈H

Aji =
∑
j∈H

Bji ∗ UDPj ∀i ∈ H (5.29)

∑
pm∈PM

DMpmi ≤
∑

sm∈SM
SMsmi ∀i ∈ H (5.30)

∑
i∈H

UDPj ∗Bij ≥ Dj ∀j ∈ H (5.31)

Aij ≤M ∗ xij ∀i, j ∈ H (5.32)

Bij ≤M ∗ yij ∀i, j ∈ H (5.33)

xji ≤ 1− xij ∀i, j ∈ H|i <> j (5.34)

∑
i∈H

xij ≤ 1 ∀j ∈ H (5.35)

∑
i∈H|i<>j

yij ≤ 1 ∀j ∈ H (5.36)

CapProd ∗Ni ∗DHi ∗ UR ≥
1

365
∗
∑
j∈H

Aij ∀i ∈ H (5.37)

∑
i∈H|i=j

yij ≤
∑

pm∈PM
M ∗DMpmj ∀j ∈ H (5.38)

CapProd ∗Ni ≥
∑
j∈H

Aij ∀i ∈ H (5.39)

∑
pm∈PM

DMpmi ≥
∑
j∈H

Bij ∀i ∈ H (5.40)

∑
pm∈PM

CapPPpm ∗DMpmi ∗DHi ∗ UR ≥
∑
j∈H

Bij ∗
4

365
∀i ∈ H (5.41)

Aij , Bij , Nh, DMpmi, SMsmi ≥ 0; xij , yij ∈ {0, 1}
Aij , Bij , Nh, DMpmi, SMsmi ∈ Z (5.42)
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5.5 Experimental settings

5.5.1 Problem instance description

A real case study related to the �Rhone Nord Beaujolais Dombes� territorial hospi-
tal network is proposed to illustrate the results of the mathematical model and its
applicability in a realistic case. The network located in the north of Lyon (France)
has 8 di�erent hospitals spread in the region, and each one has di�erent consump-
tions and treat di�erent types of illnesses; they have di�erent levels of demand.
Results are analyzed considering key performance indicators (costs of the provided
solutions) and qualitative indicators (network design).

The case study analyzed in this work consider a network of hospitals with the
following characteristics:

• 8 hospitals in the network

• Overture times (annual) varies between 1,690 (Scenario 1) and 2,820 (Scenario
2) hours per year

• The number of prescriptions varies between 387,581 and 3,038,490 per year

• 3 types of suppliers of robots, each one with di�erent types of robots, con�g-
urations and capacities

• The suppliers has one con�guration of robots for each type of process (pre-
scription preparation and storage of unit-doses)

• Daily opening hours varies between 6.5h to 8.5h

• Capacities of robots can be increased

5.5.2 Deterministic model results

The total costs obtained by the deterministic model 5.4.3 are presented in Tables
5.1 and 5.2 which corresponds to the two di�erent scenarios: minimum value and
maximum value of 1690 and 2820 opening hours respectively. The costs have been
normalized for con�dential reasons.

Costs

Total costs
Preparing
unit doses

Distribution Investments

Scenario 1,1690 hours
Supplier 1 1.00 1.00 1.00 0.76
Supplier 2 0.38 0.10 0.94 1.00
Supplier 3 0.55 0.39 0.84 0.83

Table 5.1: Deterministic model costs of scenario 1
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Costs

Total costs
Preparing
unit doses

Distribution Investments

Scenario 2,2820 hours
Supplier 1 1.00 1.00 1.00 0.79
Supplier 2 0.38 0.10 0.88 1.00
Supplier 3 0.55 0.39 0.89 0.83

Table 5.2: Deterministic model costs of scenario 2

Results are presented with the total cost classi�ed into unit doses costs (prepar-
ing unit doses), distribution costs (of prescriptions and unit doses) and investment
costs. In both cases the best result is obtained by supplier 2 due principally to lower
unit doses costs. The lower costs in both scenarios corresponds to the distribution
costs that in the higher case corresponds to 6.04% of the total cost.

Tables 5.3 and 5.4 present the detailed solution of location of robots for both
scenarios, it contains for each supplier the number and the location of the robots
in the network of hospitals. Each supplier has di�erent types of robots for each
process, in the solution robots are presented as T1, T2, ..., and so on depending on
the con�guration and the supplier. For example in Table 5.3 for the supplier 2 the
hospitals H2, H3 and H1 are considered for locating the robots T1 (1, 0 and 4 units
respectively) and robots T2 (2, 1 and 3 units respectively).

Figures 5.5 and 5.6 present the detailed solution of the allocation of hospi-
tals (con�guration of the network), the dotted line represents the preparation of
unit-doses and the continuous line represents the distribution of prescriptions (al-
location). For example in �gure 5.5, for the supplier 2, hospitals H2, H3 and H1
prepares unit-doses and hospital H2 distribute prescriptions to hospitals H6 and H8,
hospital H1 distribute prescriptions to hospitals H7, H4 and H5. Additionally, in
hospitals where robots are located it must be enough capacity to satisfy their own
demand of prescriptions, in this case for hospitals H2, H3 and H1.
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Supplier 1 Supplier 2 Supplier 3
Robots H1 Robots H2 H3 H1 Robots H4 H1
T1 5 T1 1 0 4 T1 1 6
T2 3 T2 2 1 3 T2 1 0
T3 3 T3 0 1

T4 1 0

Table 5.3: Deterministic model solution for location of robots scenario 1

Figure 5.5: Con�guration of the network for scenario 1

Supplier 1 Supplier 2 Supplier 3
Robots H2 H1 Robots H2 H4 H1 Robots H2 H1
T1 2 3 T1 2 1 2 T1 2 6
T2 1 2 T3 4 2 5 T2 1 0
T3 1 2 T3 0 1

Table 5.4: Deterministic model solution for location of robots scenario 2
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Figure 5.6: Con�guration of the network for scenario 2

The results show that there are di�erences in the solutions depending on the
scenario and the supplier. For example in scenario 1 and supplier 1 the location of
robots is centralized over a single hospital (H1), and for the rest of scenarios and
suppliers the location of robots are decentralized.

Also the deterministic model allows to determine the capacities in units per
week for the best con�guration (lower cost), for example the capacities for the
con�guration of scenario 1 and supplier 1 is presented in table 5.5.

Type of robots
Con�guration and capacities

# of robots Capacity (units per week)
Preparing unit-doses 5 200000

Storage 3 135000
Preparing prescriptions 3 120000

Table 5.5: Con�guration and capacities of robots for sc. 1 and sup. 1

Based on this results, it can be concluded that with 5 robots of preparing unit-
doses (cutting robots) each week it's possible to prepare 200000 unit-doses and
with 3 robots of storage can be keeped on inventory 135000 unit-doses. Finally,
as preparing prescriptions robots are join to the storage robots, the number of this
kind of robots is equal to 3 having a capacity to prepare 120000 prescriptions per
week.
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5.5.3 Stochastic model results

The information of demand of medicines provided by the network of hospitals has
been used to generate scenarios over a planning horizon of 7 years which is considered
as the time that robots are useful, in this way increments and decrements of the
demand in the range -30% + 30% has been considered. The decrements are justi�ed
by the tendency of some of the hospitals to specialize in some services, therefore
reducing the quantity of patients that can be attended.

As we have used the concept of p robustness, for each scenario of demand, a
policy of distribution of prescription and unit doses is obtained, its optimal value
is compared with the worst case in order to obtain a common policy feasible over
all scenarios (30) which guarantees a p robust value lower than 0.7. The results of
the stochastic model are presented in Tables 5.6, 5.7 and 5.8, where economic
results are normalized for con�dential reasons, for each supplier the same scenarios
of overture times were analyzed. Also the distribution network for each scenario are
presented in �gures 5.7, 5.8 and 5.9.

Supplier 1

Scenario 1 Objective: 1.00 Unit doses costs: 0.75 Dist. costs: 0.02 Investment: 0.23
H3 H5 H6

T1 1 3 1
T2 1 2 1
T3 1 2 1

Scenario 2 Objective: 1.00 Unit doses costs: 0.75 Dist. costs: 0.02 Investment: 0.23
H1 H3 H5 H6

T1 1 1 2 1
T2 1 1 1 1
T3 1 1 1 1

Table 5.6: Stochastic model solution location of robots for supplier 1
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Figure 5.7: Resilient network for supplier 1

Supplier 2

Scenario 1 Obj.: 1.00 Unit-doses costs: 0.19 Dist.: 0.04 Invest.: 0.77
H3 H5 H6 H7

T1 1 4 0 0
T2 0 0 1 0
T3 2 8 0 1

Scenario 2 Obj.: 1.00 Unit-doses costs: 0.2 Dist.: 0.04 Invest.: 0.76
H2 H3 H5 H6

T1 0 2 3 0
T2 0 0 0 0
T3 1 4 5 1

Table 5.7: Stochastic model solution location of robots for supplier 2
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Figure 5.8: Resilient network for supplier 2

Supplier 3

Scenario 1 Obj.: 150E(-6) Unit-doses costs: 1 Dist.: 5E(-6) Invest.: 6.8E-(5)
H3 H5 H6

T1 0 5 1
T2 1 0 1
T3 0 1 0
T4 1 0 1

Scenario 2 Obj.: 1.00 Unit-doses costs: 0.52 Dist.: 0.03 Invest.: 0.45
H1 H3 H6

T1 1 1 4
T2 0 1 0
T3 1 0 1
T4 1 1 0

Table 5.8: Stochastic model solution location of robots for supplier 3
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Figure 5.9: Resilient network for supplier 3

It can be observed in table 5.6 that con�gurations obtained are di�erent between
scenarios, due to the use in the second scenario of an extra hospital to locate robots,
thus increasing the total costs. In Tables 5.7 and 5.8 results shows that the number
of hospitals used are the same but using di�erent locations and con�gurations.

On the other hand, it can be concluded that for both scenarios at least 3 hospitals
are used to locate robots and each hospital where robots are located satisfy its
own demand and support other hospitals even if they have robots. Depending of
the supplier and the scenario the con�guration obtained is di�erent. For supplier
1, in scenario 1, the hospital (H5) is in charge of distributing prescriptions over
4 hospitals and itself, one of these hospitals (H3) has robots. The hospitals H3
and H8 satisfy the demand of hospitals H4 and H8 respectively. For supplier 1 in
scenario 2 the network con�guration changes, the distribution of unit-doses is one
to one, H1, H3, H5 and H6 distributes prescriptions to hospitals H4, H2, H8 and
H7 respectively. The results for supplier 2 shows that in scenario 1 hospital H7
distributes to hospitals H2, H4 and itself, hospital H6 only satisfy its own demand
and distribute prescriptions to H5 which also distribute prescriptions to hospitals
H3 and H1. Finally, H3 satisfy its own requirements and those for hospital H8. For
the second scenario, H2 satisfy its own demand and the demand of hospital H8 and
support H3 which satisfy the demand of H4, H6 satisfy the demand of H7 and H5
distribute prescriptions to hospitals H1 and H2. Finally for supplier 3, in scenario 1,
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each hospital has assigned at least two hospitals, H3 satisfy the demand of hospitals
H4 and H7, H5 support H6 and satisfy the demand of H2 and H1 and H6 also satisfy
the demand of H4 (as H3 does) and H8. Finally for scenario 2, H1 distribute to
hospitals H2 and H8, H3 distribute to H7 and H6 support H1 and distribute to H4
and H5.

By comparing the deterministic and the stochastic results it can be observed
the in�uence of the resilience constraints over the results obtained by the stochastic
version. In the stochastic model all the con�gurations have at least two hospitals
that distributes medicines to the rest hospitals of the network. Also, and except
for one scenario, the distribution of prescriptions is made by hospitals where also
are located robots, therefore the capacities located in some hospitals are enough to
satisfy the requirements of other hospitals and to support those where capacities
are not enough to distribute over the network. Another di�erence is that in the
deterministic model results, a possible con�guration of the network is to locate
robots over a hospital which don't distribute prescriptions to other hospitals (see
supplier 2 of �gure 5.5).

5.6 Conclusions

In this chapter deterministic and stochastic optimization approaches were used to
develop a real case application of optimization in the automating process of prepar-
ing, storage and dispatching prescriptions and unit-doses in a network of hospitals,
where location-allocation of pharmacy robots decisions are evaluated. The concept
of p-robustness has been used to model the uncertainty in demand. The concept of
multi-source resilience strategy also has been considered in the model to avoid the
risk in the distribution of medicines and prescriptions in the healthcare network. A
real life instance were solved through several experiments comparing the solutions
of the deterministic model with the solutions of the stochastic model.

The deterministic and stochastic models proposed can be implemented to make
long term decisions about automatic dispensing medicines systems and distribution
of medicines across a hospital network which can have a positive impact on the
service o�ered to patients.
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In this chapter di�erent models based on machine learning techniques are pre-
sented to estimate the pharmaceutical expenditure associated to a chronic disease
(diabetes). Di�erent models are used in two di�erent stages. In the �rst stage
�ve di�erent machine learning models were used: generalized linear model, deep
learning, random forest, gradient boosted trees and support vector machines. The
machine learning models were combined with additional techniques: (i) feature se-
lection, (ii) boosting and (iii) optimized support vector machine. The second stage
consists in the addition of two new variables to the data base: the Charlson index
and the number of comorbidities, these variables were calculated based on the con-
dition of each patient of the data base. With this new information the same models
used in the �rst stage are used in the second stage in order to analyze the impact
of the comorbidity in the performance of the machine learning models to estimate
the pharmaceutical expenditure.



114

Chapter 6. Prediction of pharmaceutical expenditure in chronic

diseases using machine learning models

6.1 Introduction

Healthcare is one of the most important issues in the global economies due to the in-
creasing expenditure per capita caused by demographic and epidemiological changes.
Healthcare expenditures can be up to 9.95% of the world's total gross domestic
product generating huge challenges for public and private health services like the
managing of budgets [Carreras 2016].

One of the biggest problems in healthcare is related with the high cost of ill-
nesses that is expected to increase over the pass of the years. Improving the health
services to the population can directly become in an economic improvement because
it is suitable for workers and inhabitants to be healthy than unhealthy population
[Council 2001]. In this way, the health systems become a priority for each coun-
try due to its objective of prevention, diagnosis and treatment. Depending on the
situation, it could be necessary to estimate the individual cost of treatment or the
episode care cost. With this type of information, hospital's managers could be able
to improve the planning of resources according the the patientâs needs. Another
problem faced by the health systems is the disproportionately expenditures gener-
ated by a small portion of the population resulting in a high-cost high-need patients
because of its spending concentration. Some of these population can be classi�ed
as highly prevalent comorbid chronic condition pro�le, in this way a correct plan-
ning of resources becomes an objective for healthcare managers and organizations
[Gar�nkel 1988].

Diabetes Melitus is a very common chronic metabolic disease that commonly
is presented over people of middle and old age but nowadays incidences are also
presented in children [Woldaregay 2019], [Kaur 2019]. This illness is classi�ed as
one of the fast growing chronic disease and almost 8.5% of the global population is
a�ected by Diabetes [WHO 2017]. It is de�ned as the increase of levels of glucose in
the blood because of its non outreach to the cells present in the body. Given this,
it is also important to emphasize that the amount of monetary resources used to
treat patients with diagnoses of Diabetes is very high given the severity, progression
and the type of medicines used [Simon 2005]. Diabetes is one of the diseases that
produces the most public/private expenditure within system organizations, a�ects
family budgets and is one of the diseases that implies more risk of chronic non
transmissive diseases appearing, e g chronic kidney disease and Alzheimerâs disease,
and also increases the risk of associated infections It has a strong impact as a high
Social Security System cost on the Health System with its growing worldwide trend,
especially in developing countries [Https://www.diabetesatlas.org/en/ 2019].

Chronical diseases implies a high pharmaceutical expenditure due to its com-
plexity of treatments and the medicines used. For this reason, the prediction of the
pharmaceutical expenditure of these type of illnesses allows a better management
of medicines and budgets. Diabetes is one of the diseases that produces the most
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public/private expenditure within system organizations, a�ects family budgets and
is one of the diseases that implies more risk of chronic non transmissive diseases
appearing, e.g chronic kidney disease and Alzheimer's disease, and also increases
the risk of associated infections. It has a strong impact as a high Social Security
System cost on the Health System with its growing worldwide trend, especially in
developing countries [Federation 2019].

In this context, the pharmaceutical expenditure associated to this type of dis-
eases becomes and important task for managers in hospitals due to its impact in the
managing of budgets. For this reason, the main purpose of this chapter is to predict
the pharmaceutical expenditure of Diabetes and comorbidities associated by using
machine learning models.

6.2 Background

Nowadays, arti�cial intelligence and specially machine learning models have been
used for analysis of high dimensional data becoming a rapidly growing �eld in the
application in di�erent areas. Given that data of population in hospitals and health-
care centers is increasing therefore the knowledge about patients is also higher. In
this way the application of machine learning in healthcare is also an emerging area.
In this way, in this section are presented methods developed in the literature for
predicting pharmaceutical expenditure and methods for modeling and predicting
diabetes.

[Caballer-Tarazona 2019] developed a cross-sectional study for predicting health-
care expenditure in a district of Spain based on multimorbility group. Using pub-
lic databases, authors obtain information related to: sex, costs of hospitalization,
surgery, outpatient consultations, laboratory, oncology care, and other types of ser-
vices managed by the hospitals. With this information authors proposed the use
of logistic regression with two phases that corresponds to two interrelated models.
The �rst model is modeled using a logit model for determining the probability of a
greater than 0 and the second model obtains the estimation of the costs throw the
use of the Manning and Mullahy algorithm. Using a statistical test the explanatory
variables are evaluated and some statistics are used to evaluate the performance of
the results (Root Mean Squared Error, Mean Absolute Percentage Error, Medium
Absolute Percentage Error and coe�cient of determination). Results of the pro-
posed models shows that on average can be obtained coe�cients of determination
between 33% and 48%.

A similar study was developed by [Mujasi 2015]. The aim of this study is to an-
alyze and identify the main predictors for pharmaceutical expenditure in di�erent
districts with the objective of determining the appropriate budget for each zone.
The variables used for creating the model were related with population character-
istics, health system characteristics and health behavior. The authors perform an
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uni-variant descriptive analysis and a bi-variant descriptive and inferential analysis
too for measuring the correlation between variables. With these analyses, they per-
form an econometric analysis for testing regression models obtaining di�erent values
that can help to decision makers to understand the behavior of the pharmaceutical
expenditures.

In the same idea of expenditure prediction and control, [Quercioli 2018] devel-
oped a cross-sectional study in three phases: collection of health status information
in a province of Siena, collection of health expenditure and statistical analysis of
these information. To develop the statistical analysis, authors perform a square
root transformation of the total health expenditure and a z-standardization of the
continuous variables for proposing a new index of pharmaceutical expenditure. The
�ndings shows that disease severity is a better predictor than the risk of death mea-
sure and the health expenditure is in�uenced by physical areas of perceived health.
In a similar way [Lauridsen 2010] perform a regression model for public pharma-
ceutical expenditure for 50 provinces in Spain. They analyze the e�ects of spatial
association using a non parametric �ltering approach that helps to identify the main
variables that a�ect the pharmaceutical expenditure. With this type analysis and
identi�cation of main variables, [Mujasi 2015] also developed a cross sectional study
for allocating primary healthcare pharmaceutical budgets to districts.

There are works related with the identi�cation of factors that a�ects the phar-
maceutical expenditure. [Mousnad 2014] developed a systematic review that allow
readers to identify di�erent methodologies to determine the factors that increase the
pharmaceutical expenditure. In conclusion most of the articles uses statistical meth-
ods to identify the main factors. Some of the factors that contribute to increase the
pharmaceutical expenditure are: drug exposure, price of medicines, average growth
rate of population, socio-economic status, age, sex, among others. As conclusion
of this review, authors a�rm that the major cost drivers are changes in medicine
quantities, therapies and new medicines.

On the other side, there are works related with the use of machine learning or
statistical models for Diabetes rate prediction. For example, [Pollmanns 2019] used
an ecological analysis using data from Germany identifying the diabetes hospitaliza-
tion rates. Authors developed a linear regression and logistic regression analysis for
identifying the variables that could help to determine the diabetes rates of hospital-
ization and for identifying the impact of predictors on the probability for a country
to show a rate out of limits of control. The coe�cient of determination obtained
was 0.568.

Di�erent Machine Learning models for predicting diabetes were tested by
[Kaur 2019]. By using a data set of female patients with a minimum age of 21
years old in India. The main idea of the research was to identify an early diagnosis
of diabetes based on 9 di�erent types of variables using 6 type of machine learn-
ing models. Di�erent evaluation parameters were obtained such as accuracy, recall,
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precision, F1 score and Area Under the ROC Curve (AUC) �nding that the best
accuracy was obtained by the support vector machine model. A similar study was
developed by [Birjais 2019] but using three di�erent techniques, gradient boosting,
logistic regression and Naive Bayes with the main idea of improve the diagnosis of
diabetes disease. Authors used 8 di�erent types of attributes obtained by an Indian
data-base. Authors use the percentage of sensitivity and speci�city and the test-
ing accuracy to evaluate the performance of the models �nding that the gradient
boosting has a higher level of accuracy over the other two models.

6.3 Methods

The general methodology used is this study is described in Figure 6.1

Figure 6.1: Methodology
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After the analysis of the anonymized data and the cleaning and missing data
imputation (see subsection 6.3.1), the main idea of the methodology in this work
is to use machine learning models (generalized linear model, deep learning, random
forest, gradient boosted trees and support vector machines) in two di�erent stages.
In the �rst stage the basic models are analyzed with di�erent performance indicators,
after that, three di�erent techniques are used for analyzing improvements of the �rst
results (feature selection, boosting and optimized support vector machines). In the
second stage new variables related with comorbidity were calculated based on the
data collected and added to the database, with these new variables and these new
data, experiments are repeated and the performance indicators are evaluated.

6.3.1 Data description

The data used for the present study has been collected by a Colombian Hospital
recording patients who have previously been prescribed as patients with diabetes
and have arrived at the hospital su�ering a comorbidity. The data source used
has records for two di�erent years (2017-2018) containing information related with
sex, age, date where patient assist to the hospital, medical diagnostic(s), type of
a�liation to the Colombian health system (subsidized or contributory given by the
Colombian law 1751/2015) and the pharmaceutical expenditure. The pharmaceu-
tical expenditure represent di�erent types of medicines administrated to patients
and their costs. In some cases these costs are not homogeneous, it can exist di�er-
ent values for the same patient and the same diagnostic. The data base contains
193.955 records, nevertheless, as one patient can have more than one diagnostic the
number of di�erent patients registered decreases to 36392 records. The population
is divided into 45% males and 55% females. Respecting to the type of System, 70%
of the patients belongs to contributory system (see �gure 1.1) while 30% to the
subsidized system.

There are 214 di�erent types of illnesses associated to diabetes, on average each
patient arrives into the hospital with 1.78 illnesses with a minimum value of 1 and
a maximum value of 21. Additionally to this data two new variables based on the
information available have been calculated and included in order to improve the
forecasting: (i) frequency of medicine consumptions which indicates the number of
consumption of medicines of each patient when a treatment is demanded to the
hospital and (ii) the number of visits (di�erent dates) a patient requires a service
at the hospital.

The data base was cleaned up �lling some missing values associated with the
type of system of the patient. This situation occurs when a patient has multiple
lines (multiple consumption of medicines) but the registration of the type of health
system status is only available for the �rst line, therefore a program has been used
to �ll this information because a patient has only one type of system.
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Variables

Table 6.1 present the description of the variables used is this study.

Variable Description Type

Sex Sex of the patient M/F (binary)
Age Age of patients Integer (years)
Type of a�liation Type of system to the health

system
subsidized/contributory
(binary)

Frequency of visits Number of visits to the hospi-
tal

Integer (years)

Frequency of consump-
tion of medicines

Number of di�erent consump-
tions of medicines

Integer (years)

Type of illness(es) (214) Type of comorbidity(ies) re-
ported for each patient

Binary (presence or ab-
sence)

Pharmaceutical expen-
diture

Pharmaceutical expenditure
for each patient

Real ($)

Table 6.1: Description of variables

6.3.2 Data analysis

Figure 6.2 presents the range of the values of the pharmaceutical expenditure for
each patient over two years. These values varies between $262 and $2.217.366.074
Colombian pesos for one patient with an average of $18.657.672.

Figure 6.2: Pharmaceutical expenditure of diabetes' patients 2017-2018
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Also, for one patient per illness associated with diabetes per visit to the hospital
the pharmaceutical expenditure varies between $261 and $206.094.271 Colombian
pesos with an average of $2.500.227.

Figure 6.3 presents the boxplot of the pharmaceutical expenditure (in $COP)
for each patient over two years. Although the values are concentrated in a region
with costs lower than $ 50.000.000 (skewed left), the range is wide, it exists for
example an important number of values concentrated around high costs, than can
be up to $ 2.000.000.000. This implies that the pharmaceutical expenditure presents
a high level of variability.
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Figure 6.3: Boxplot of pharmaceutical expenditure

Figure 6.4 presents the histogram of the pharmaceutical expenditure distribu-
tion for each patient(in $COP) over two years. Most of the data are in the �rst
range of the histogram, nevertheless the range of the data is large which support
the conclusion derived by the boxplot presented in �gure 6.3.
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Figure 6.4: Histogram of pharmaceutical expenditure

Figure 6.5 presents the distribution of pharmaceutical expenditure (in $COP)
versus age (in years) of each patient over the two years. It can be concluded that
the values of pharmaceutical expenditure are mostly concentrated in older patients,
this is also supported by the fact that Diabetes is a common disease for older people.
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Figure 6.5: Pharmaceutical expenditure versus age
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6.3.3 Performance measures

In order to analyze the performance of the models the following metrics are used:

• Root Mean Squared Error: It is a measure of the di�erences between values
(sample or population values) predicted by a model or an estimator and the
values observed. This measure is calculated as:

1

n
Σn
i=1(yi − fi)2

• Mean Absolute Error: is the amount of error in the measurements. It is
the di�erence between the measured value and true value. This measure is
calculated as:

1

n
Σn
i=1|yi − fi|

.

• Relative Error Lenient: is the ratio of the absolute error of a measurement to
the measurement being taken. This measure is calculated as follows:

1

n
Σn
i=1

|yi − fi|
max(|yi|, |fi|)

.

• Squared Error: it is a measure that shows how close is the prediction against
the real values. This measure is calculated as:

Σn
i=1(yi − fi)2

• Correlation: It is the degree in which the prediction and the real values are
related.

Where n is the number of observations, yi the observed value and fi the predicted
value.

6.3.4 Machine learning models

As the main purpose of this chapter is to build a model for predicting the pharma-
ceutical expenditure, di�erent machine learning models have been used to have a
preliminary prediction. In this way, the following models have been used:

• Generalized Linear Model [Hastie 1990]: correspond to a generalization of the
linear regression but it allows that the response variables errors can have dis-
tributions di�erent to the normal distribution. This model uses the following
equation:

ni = B0 +B1 ∗ x1i + ...+Bn ∗ xni
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Where ni corresponds to the response value, in this case the pharmaceutical
expenditure and Bi the coe�cients obtained by the regression model when
using the xni input variables represented in this case by the variables described
in table 6.1.

• Deep Learning [Schmidhuber 2015]: is a method based on arti�cial neural
networks that use multiple layers for extracting features from the inputs in this
case the variables described in table 6.1, the idea is to have a high number of
hidden layers that enables to predict accurate values of the response variables
in this case the pharmaceutical expenditure, the following �gure represents a
model of deep learning:

Figure 6.6: Example of deep learning [Rosebrock ]

• Random Forest [Breiman 2001]: is composed by multiple tree predictors in
which the main idea is to learn very highly irregular patterns and build the
classi�cation or prediction by obtaining the average of the multiple deep de-
cision tress. The main procedure is to generate tree models where variables
are selected in this case the variables described in table 6.1, and for each kth
tree a random vector Θk is generated, then the random forest is a collection
of of tree models h(x,Θk) where each tree has a weighted value.

• Gradient Boosted Trees [Mason 1999]: this technique produces a prediction
model in the form of an ensemble of weak prediction models, in which each
new tree is a �t on a modi�ed version of the original data set, the Gradient
Boosted Trees use the following equations:

yti =

t∑
k=1

fk(xi) = yt−1i + ft(xi)

Where yti is the model trained in round t that represents the prediction of the
pharmaceutical expenditure, yt−1i the functions added in the previous rounds
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and ft(xi) the new function added that considers in this case the variables
described in table 6.1.

• Support Vector Machine [Vapnik 2000]: is a supervised learning method that
use a function of classi�cation for partitioning the data into categories. The
Support Vector Machine uses the following function:

W = C ∗
N∑
i=1

L(yi, F (xi)) +

P∑
j=1

B2
j

Where xi corresponds to the inputs in this case the variables explained table
6.1, L(.) is the loss function, B are the coe�cients of the regularization term
when considering P predictors (the predictors are associated with variables
of sex, age, type of system,...) and the constant C is the error penalty of the
model. Also, the function F (.) is a prediction equation for the pharmaceutical
expenditure that can be de�ned as follows:

F (x) =
N∑
i=1

αi ∗ ϕ(x) +B0

Where αi is the linear kernel function used to transform the input data to the
required forms of relationships and B0 a constant.

Results

Tables 6.2, 6.3, 6.4, 6.5, and 6.6 present the results of the di�erent machine
learning models for each performance measure and its standard deviation.

Model Root Mean Squared Error Standard Deviation

Generalized Linear
Model

47735428.028 +/- 7435069.005

Deep Learning 47165735.786 +/- 4860949.285
Random Forest 54994912.257 +/- 7728244.132
Gradient Boosted Trees 45401130.757 +/- 8336406.965
Support Vector Ma-
chine

55412684.408 +/- 7282307.490

Table 6.2: Root Mean Squared Error
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Model Mean Absolute Error Standard Deviation

Generalized Linear
Model

17339900.689 +/- 623678.019

Deep Learning 16909068.925 +/- 533221.932
Random Forest 23341173.787 +/- 780766.312
Gradient Boosted Trees 15544911.101 +/- 793509.151
Support Vector Ma-
chine

24163221.134 +/- 1213923.578

Table 6.3: Mean Absolute Error

Model Relative Error Lenient Standard Deviation

Generalized Lin-
ear Model

0.8132 +/- 0.68%

Deep Learning 0.6998 +/- 0.54%
Random Forest 0.7576 +/- 0.21%
Gradient Boosted
Trees

0.6557 +/- 0.64%

Support Vector
Machine

0.7623 +/- 0.46%

Table 6.4: Relative Error Lenient

Model Squared Error Standard Deviation

Generalized Linear
Model

2322895289882560 +/-
688778331766103.400

Deep Learning 2243509694607950 +/-
461921813118369.440

Random Forest 3072220980059220 +/-
842448833613135.900

Gradient Boosted Trees 2116859218857420 +/-
769622667971187.400

Support Vector Ma-
chine

3112991195237140 +/-
807425914950682.600

Table 6.5: Squared Error
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Model Correlation Standard Deviation

Generalized Linear
Model

0.568 +/- 0.071

Deep Learning 0.582 +/- 0.026
Random Forest 0.549 +/- 0.035
Gradient Boosted Trees 0.589 +/- 0.072
Support Vector Ma-
chine

0.338 +/- 0.043

Table 6.6: Correlation

Based on these results it can be concluded that the model with the best perfor-
mance over the �ve key performance indicators (Root Mean Squared Error, Mean
Absolute Error, Relative Error Lenient, Squared Error and Correlation) corresponds
to the Gradient Boosted Trees model. For a better understanding of the performance
of the models, in Figures 6.7, 6.8, 6.9, 6.10 and 6.11 are presented the charts
of the contrast between the predicted pharmaceutical expenditure (PE) in $ COP
generated by each model and the real values.

Figure 6.7: Chart of the predicted PE Generalized Linear Model versus real data
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Figure 6.8: Chart of predicted PE Deep Learning versus real data

Figure 6.9: Chart of predicted PE Random Forest versus real data

Figure 6.10: Chart of predicted PE Gradient Boosted Trees versus real data
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Figure 6.11: Chart of predicted PE Support Vector Machine versus real data

From the previous �gures, it can be concluded that with exception of the support
vector machine model, the performance of the di�erent models are at least graph-
ically similar because these models can predict the same area of prediction values,
nevertheless the support vector machine model only can predict values with low
pharmaceutical expenditure. Given these results it can be concluded that over the
performance indicators the Gradient Boosted Trees model presents the best results.

6.3.5 Machine learning models with feature selection

In order to improve the performance of the machine learning models obtained in
the previous section, a feature selection technique was used. The feature selection
technique helps to determine the most relevant features in a regression or classi�ca-
tion problem [Khaire 2019]. The main idea of feature selection is to identify features
which are not providing useful information and those which are not providing more
information that the current ones (denominated as irrelevant and redundant respec-
tively). In this case each feature corresponds to the variables described in table 6.1.
In this way, a combined forward selection technique was used. The feature selection
algorithm is as follows:
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Algorithm 1 Feature selection algorithm [Khaire 2019]
0: procedure Feature selection

FS(0) = 0;F (0) = {f1, f2, ..., fn}; i = 0; opt = 0; iter = 0;

while i < n

0: k=size(F (i);
0: max=0;
0: feature=0;
0: for j=1 to k
0: score=eval(F (i)

j );
0: if score > max;
0: max=score; feature=F (i)

j ;
0: end-if

0: end-for

0: if max > opt

0: opt=max; iter=i;
0: end-if

0: FS(i+1) ←FS(i) + feature
0: F (i+1) ←F(i) - feature
end-while
=0

Results

The models were tested again including the feature selection, the results for each
performance measure are presented in Tables 6.7, 6.8, 6.9, 6.10, and 6.11.

Model Root Mean Squared Error Standard Deviation

Generalized Linear
Model

46155352.794 +/- 6655501.025

Deep Learning 40876976.359 +/- 4159846.285
Random Forest 53487021.168 +/-75007659.132
Gradient Boosted Trees 52464941.089 +/- 8416370.126
Support Vector Ma-
chine

55358623.748 +/- 7287405.821

Table 6.7: Root Mean Squared Error
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Model Mean Absolute Error Standard Deviation

Generalized Linear
Model

17622331.037 +/- 787578.407

Deep Learning 12227186.157 +/-468258.531
Random Forest 18451267.509 +/-431398.984
Gradient Boosted Trees 17853497.598 +/- 7449112.148
Support Vector Ma-
chine

23925826.134 +/- 1213923.578

Table 6.8: Mean Absolute Error

Model Relative Error Lenient Standard Deviation

Generalized Linear
Model

0.6902 +/- 0.48%

Deep Learning 0.6525 +/- 0.51%
Random Forest 0.6738 +/- 0.58%
Gradient Boosted Trees 0.6733 +/- 0,61%
Support Vector Ma-
chine

0.7623 +/- 0.46%

Table 6.9: Relative Error Lenient

Model Squared Error Standard Deviation

Generalized Linear
Model

2165753146610370 +/-
631870990446783.600

Deep Learning 1983980493135700 +/-
414567421456785.465

Random Forest 2880922753326300 +/- 527905321103420
Gradient Boosted Trees 2809238272371500 +/-

837882795474225.600
Support Vector Ma-
chine

3107062250100940 +/-
807185229098870.100

Table 6.10: Squared Error



6.3. Methods 131

Model Correlation Standard Deviation

Generalized Linear
Model

0.599 +/- 0.040

Deep Learning 0.590 +/-0.021
Random Forest 0.641 +- 0,070
Gradient Boosted Trees 0.645 +/- 0.061
Support Vector Ma-
chine

0.372 +/- 0.035

Table 6.11: Correlation

Based on these results it can be concluded that the performance is improved
in most of the models for most of the performance indicators. Gradient Boosted
Trees is the only model that can not reach an improvement by including the feature
selection (reaching an improvement only in the correlation indicator). The mean
absolute error measure of the generalized linear model and the relative error lenient
measure of the support vector machine model were not reduced.

In general, the best improvement obtained is for the Deep Learning model: the
Root Mean Squared Error was reduced by 13.33%, the Mean Absolute Error was
reduced by 21.34% the Relative Error Lenient was reduced by 6.76%, the squared
error was reduced by 6.28% and the correlation was increased by 0.17%. The com-
parison between the performance indicators obtained for the deep learning model
without feature selection and those obtained by the deep learning model with feature
selection are presented in table 6.12.

Performance measure
D.L without

feature selection

D.L with

feature selection
% of improvement

Root mean squared error 47165735.79 40876976.36 13.33%
Mean absolute error 15544911.1 12227186.16 21.34%
Relative error lenient 0.6998 0.6525 6.76%

Squared error 2.11686E+15 1.98398E+15 6.28%
Correlation 0.589 0.590 0.17%

Table 6.12: Comparison of deep learning performances without and with feature
selection

6.3.6 Machine learning models with boosting strategy

In order to improve the results obtained by the previous methods another strat-
egy named Boosting was used to reduce the variability of results. The strategy of
Boosting consists in combining di�erent methods in the training phase to improve
the performance of prediction and reduce the variability, this method divide the
training set into subsets in which a learning algorithm is used and when a new in-
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stance is added, the number of classi�ers is counted for adding this new instance
into those with highest values, in this way boosting method learns slowly an in
each iteration, a model is �tted with respect to the residuals of the model and with
this new information is added to the �tted function, after all the process for each
model a weight is generated and used for improving the regression or classi�cation
[Moral-García 2020], [Breiman 1996]. The graphical description of boosting method
is presented in Figure 6.12.

Figure 6.12: Boosting method description

The pseudo-code of the boosting strategy is as follows:

Algorithm 2 Boosting algorithm [Mason 1999]
0: procedure Boosting

xi are the variables and ;y the response variable (pharmaceutical expenditure);
wi = 1

n for all the training points
0: for i=1 to M
0: �t a regression tree according to wi
0: compute the residuals rim=(observed-predicted)
0: predict the residuals rt
0: update the prediction with the selected algorithm

=0
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Results

In this way, the machine learning models were combined with Decision Trees to
improve their performance indicators. Tables 6.13, 6.14, 6.15, 6.16, and 6.17
present the results of the performance indicators for all models.

Model Root Mean Squared Error Standard Deviation

Deep Learning 40716937.178 +/- 0.000
Random Forest 49034857.658 +/- 0.000
Gradient Boosted Trees 48716937.178 +/- 0.000
Support Vector Ma-
chine

48681406.049 +/- 0.000

Table 6.13: Root Mean Squared Error

Model Mean Absolute Error Standard Deviation

Deep Learning 11527546.613 +/- 45827722.734
Random Forest 17215126.430 +/- 45113148.657
Gradient Boosted Trees 16527546.613 +/- 45827722.734
Support Vector Ma-
chine

16521909.181 +/- 45791984.144

Table 6.14: Mean Absolute Error

Model Relative Error Lenient Standard Deviation

Deep Learning 0.6636 +/- 0.29%
Random Forest 0.6263 +/- 0.28%
Gradient Boosted Trees 0.6636 +/- 0.29%
Support Vector Ma-
chine

0.6633 +/- 0.29%

Table 6.15: Relative Error Lenient
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Model Squared Error Standard Deviation

Deep Learning 2373339968028839.500 +/- 32831406617709624
Random Forest 2404417265497991.500 +/- 34181195922015544
Gradient Boosted Trees 2373339968028839.500 +/-

32831406617709624.000
Support Vector Ma-
chine

2369879294869495.500 +/-
32807598646025208.000

Table 6.16: Squared Error

Model Correlation Standard Deviation

Deep Learning 0.610 +/-0.010
Random Forest 0.672 +- 0,001
Gradient Boosted Trees 0.520 +/- 0.000
Support Vector Ma-
chine

0.510 +/- 0.000

Table 6.17: Correlation

Based on these results it can be concluded that the boosting method decrease
the variability associated with the root mean squared error for all models. Also,
the results show that the boosting strategy reduce the root mean squared errors
for all models. For the root mean squared error the best improvement is reached
for the support vector machine with a reduction of 13.72%. On the other hand the
results of the variability of the mean absolute errors are not improved but their
performance are improved for all models. The best improvement for mean absolute
error is reached for the support vector machine model with a reduction of 30.95%.
All models improve the performance and the variance of the error lenient. For the
squared error measure, the results show that the variance can't be improved for
any model. Finally, the standard deviation of the correlation is reduced for all
models and the performance of this measure is improved for all models except for
the gradient boosted trees.

The best results in this phase are obtained again by the deep learning model:
the Root Mean Squared Error was reduced by 0.39%, the Mean Absolute Error was
reduced by 5.32% the Relative Error Lenient was increased by 1.70%, the Squared
Error was increased by 19.63% and the Correlation was increased by 3.39%. Table
6.18 presents the comparison of the performance measures between deep learning
with feature selection and deep learning with boosting strategy.
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Performance measure
D.L

with feature selection

D.L

with boosting
% of improvement

Root mean squared error 40876976.36 40716937.18 0.39%
Mean absolute error 12227186.16 11527546.61 5.72%
Relative error lenient 0.6525 0.6636 -1.70%

Squared error 1.98398E+15 2.37334E+15 -19.63%
Correlation 0.590 0.610 3.39%

Table 6.18: Comparison of deep learning with feature selection and deep learning
with boosting

6.3.7 Optimized machine learning model

In order to speed up the process of convergence of machine learning models and to
improve their performance measures, a combination of optimization with machine
learning models has been developed. Some search methods for the support vector
machine model are based in optimization techniques such as quadratic programing
or gradient descent, the exploration of evolutionary algorithms to optimize the pa-
rameters of the machine learning model in the training phase. Based on this, the
optimization problem is [Mierswa 2006]:

minimize =
1

2
||w||2 + C ∗

n∑
i=1

ξi (6.1)

Subject to:

yi(〈w, xi〉+ b) ≥ 1− ξi ∀i (6.2)
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In this way, the optimized machine learning strategy used in this work is as
follows:

Figure 6.13: Optimized machine learning strategy [Dantas Dias 2016]

The strategy used consists in iteratively improves the parameters of the support
vector machine model by evaluating the �tness functions that corresponds to the
prediction of the pharmaceutical expenditure, this �tness function is embedded in
an evolutionary algorithm over the set of data until no more improvements can be
reached.

The use of the support vector machines implies the use of a Kernel function. The
idea of the Kernel function is to transform data into the adequate form for processing
in the training phase, therefore this function is applied over each data instance to
transform the data into a high dimensional-space which could lead to separate the
data. The Kernel function is de�ned mathematically as Kx, y = 〈f(x), f(y)〉 where
x and y are the inputs. Di�erent Kernel functions to analyze the performance have
been used:
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• Radial

K(xi, xj) = exp(−||xi − xj ||
2

2σ2
)

where xi, xj are the inputs, in this case the variables described in table 6.1.

• Polynomial
K(xi, xj) = (xi.xj + 1)d

where d is the degree of the polynomial and xi, xj are the inputs, in this case
the variables described in table 6.1.

• Anova
K(x, y) = Σn

i=1exp(−σ(xk − yk)2)d

where d is the degree of the polynomial and xi, xj are the inputs, in this case
the variables described in table 6.1.

• Epanechnikov

K(u) =
3

4
(1− u2)and|u| ≤ 1

where u is the mean of the data normalized.

• Multiquadratic
K(xi, xj) =

√
||x− y||2 + c2

where c is the intercept constant and xi, xj are the inputs, in this case the
variables described in table 6.1.
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Results

Figures 6.14, 6.15, 6.16, 6.17 present the results for the di�erent Kernel
functions used.

Figure 6.14: Results optimized root mean squared error

Figure 6.15: Results optimized mean absolute error
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Figure 6.16: Results optimized relative error lenient

Figure 6.17: Results optimized squared error

With respect to the root mean squared error, the best improvements are obtained
by Radial and Epachenenikov kernel functions with 95.86% and 95.93% respectively.
For the mean absolute error metric the best improvements are obtained by the Radial
and Epachenenikov kernel functions with 96.54% and 98.15% respectively. In the
case of relative error lenient none of the values couldn't be improved. Finally, the
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squared error is improved in the same measure for the Radial and Epachenenikov
kernel functions with 99.86% respectively and 97.74% for the Anova. In summary
the Epachenenikov kernel function has the best results.

Table 6.19 present the comparison between the results obtained by Deep Learn-
ing model with Boosting strategy and those obtained with Optimized Machine learn-
ing with the Epachenenikov Kernel function. In this case the optimized SVM with
the Epachenenikov kernel function has the best results: the Root Mean Squared
Error was reduced by 95.92%, the Mean Absolute Error was reduced by 98.04%, the
Squared Error was reduced by 99.88% and the Relative Error Lenient was increased
by 26.79%.

Performance measure
D.L

with boosting

Optimized SVM
% of improvement

Root mean squared error 40716937.18 1663034.232 95.92%
Mean absolute error 11527546.61 225890.041 98.04%
Relative error lenient 0.6636 0.8414 -26.79%

Squared error 2.37334E+15 2.7657E+12 99.88%

Table 6.19: Comparison of D.L with boosting versus optimized machine learning
with Epachenenikov kernel function

6.4 Analysis of the impact of comorbidity variables

In order to analyze the impact of the comorbidity in the performance of the ma-
chine learning models, two new variables were included: (i) the �rst variable is
the Charlson Comorbidity Index which classify risks of patients based on comorbid
conditions, the age and 19 di�erent items that in�uence the expectation of life of
patients [Charlson 1987]. Depending on some conditions there are �ve di�erent
levels or weights that is assigned to the patient, as follows:

• 1: for conditions of Myocardial infarct, congestive heart failure, peripheral
vascular disease, dementia, cerebrovascular disease, chronic lung disease, con-
nective tissue disease, ulcer, chronic liver disease, diabetes.

• 2: for Hemiplegia, moderate or severe kidney disease, diabetes with end organ
damage, tumor, leukemia, lymphoma.

• 3: for Moderate or severe liver disease.

• 0 to 5: depending on the age of patient

• 6: for Malignant tumor, metastasis, AIDS.
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Each patient of the database was evaluated according to its condition and her/his
Charlson comorbidity index was calculated and added to the database as a new
variable.

(ii) the second variable is the number of comorbidities that each patient has
been diagnosed, this variable was calculated and added to the data base as a new
variable.

6.4.1 Machine learning models without boosting strategy

Tables 6.20, 6.21, 6.22, 6.23 and 6.24 present the results of the performance mea-
sures obtained by the machine learning models including the comorbidity variables.

Model Root Mean Squared Error Standard Deviation

Generalized Linear
Model

866836.85 +/- 161222.39

Deep Learning 877670.34 +/- 160022.59
Random Forest 938964.41 +/- 157727.22
Gradient Boosted Trees 879746.02 +/- 160950.49
Support Vector Ma-
chine

887764.33 +/- 161890.62

Table 6.20: Root Mean Squared Error

Model Mean Absolute Error Standard Deviation

Generalized Linear
Model

252715.60 +/- 34912.00

Deep Learning 268871.13 +/- 34000.41
Random Forest 275335.25 +/- 34595.75
Gradient Boosted Trees 258403.76 +/- 35460.47
Support Vector Ma-
chine

221611.18 +/- 36056.35

Table 6.21: Mean Absolute Error
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Model Relative Error Lenient Standard Deviation

Generalized Linear
Model

0.76 +/- 3.47%

Deep Learning 0.793 +/- 4.40%
Random Forest 0.752 +/- 1.58%
Gradient Boosted Trees 0.747 +/- 0.68%
Support Vector Ma-
chine

0.735 +/- 3.11%

Table 6.22: Relative Error Lenient

Model Squared Error Standard Deviation

Generalized Linear
Model

2830820127962.64 +/- 627989064579.61

Deep Learning 2818872566790.44 +/- 624308728184.57
Random Forest 22871896908882.77 +/- 629520427438.99
Gradient Boosted Trees 2846349131840.61 +/- 630694996300.21
Support Vector Ma-
chine

2884802096633.26 +/- 637814743297.96

Table 6.23: Squared Error

Model Correlation Standard Deviation

Generalized Linear
Model

0.258 +/- 0.066

Deep Learning 0.251 +/- 0.133
Random Forest 0.089 +- 0.145
Gradient Boosted Trees 0.207 +/- 0.206
Support Vector Ma-
chine

0.090 +/- 0.169

Table 6.24: Correlation

Given these results it can be concluded that there isn't an unique model that
overperforms the others. In this case, the best result for the root mean squared error,
mean absolute error and correlation is obtained by the generalized linear model. For
the relative error the model with the best result is the support vector machine and
for the squared error the best results is obtained by deep learning model.

As the generalized linear model is the one with the best results, table 6.25
presents the comparison of the results obtained by the Gradient Boosted Trees
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model (without the comorbidity variables), model that obtained the best results in
a �rst step of the �rst stage (see section 4.5.1) and those obtained by the gen-
eralized linear model (with comorbidity variables). In this case the best model is
the generalized linear model (with comorbidity variables): the Root Mean Squared
Error was reduced by 98.09%, the Mean Absolute Error was reduced by 98.37%, the
Squared Error was reduced by 99.87%, the Relative Error Lenient was increased by
15.91%, and the Correlation was reduced by 56.20%.

Performance measure
GBT

without comorbidity

GLM

with comorbidity
% of improvement

Root mean squared error 45401130.757 866836.85 98.09%
Mean absolute error 15544911.101 252715.6 98.37%
Relative error lenient 0.6557 0.76 -15.91%

Squared error 2.11686E+15 2.8308E+12 99.87%
Correlation 0.589 0.258 -56.20%

Table 6.25: Comparison of gradient boosted trees without comorbidity with gener-
alized linear model with comorbidity

6.4.2 Machine learning models with boosting strategy

With the comorbidity variables the boosting strategy is performed, the results are
presented in Tables 6.26, 6.27, 6.28, 6.29 and 6.30.

Model Root Mean Squared Error Standard Deviation

Deep Learning 1655322.182 +/- 0.000
Random Forest 1655322.182 +/- 0.000
Gradient Boosted Trees 1655322.182 +/- 0.000
Support Vector Ma-
chine

1655322.182 +/- 0.000

Table 6.26: Root Mean Squared Error

Model Mean Absolute Error Standard Deviation

Deep Learning 269225.747 +/- 1633281.673
Random Forest 269225.747 +/- 1633281.673
Gradient Boosted Trees 269225.747 +/- 1633281.673
Support Vector Ma-
chine

269225.747 +/- 1633281.673

Table 6.27: Mean Absolute Error
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Model Relative Error Lenient Standard Deviation

Deep Learning 0.7374 +/- 27.50%
Random Forest 0.7374 +/- 27.50%
Gradient Boosted Trees 0.7374 +/- 27.50%
Support Vector Ma-
chine

0.7374 +/- 27.50%

Table 6.28: Relative Error Lenient

Model Squared Error Standard Deviation

Deep Learning 2740091526194.531 +/- 32780320851464.027
Random Forest 2740091526194.531 +/- 32780320851464.027
Gradient Boosted Trees 2740091526194.531 +/- 32780320851464.027
Support Vector Ma-
chine

2740091526194.531 +/- 32780320851464.027

Table 6.29: Squared Error

Model Correlation Standard Deviation

Generalized Linear
Model

0.21 +/- 0.12

Deep Learning 0.21 +/- 0.12
Random Forest 0.21 +/- 0.12
Gradient Boosted Trees 0.21 +/- 0.12
Support Vector Ma-
chine

0.21 +/- 0.12

Table 6.30: Correlation

As the results are similar for all models, in table 6.31 is presented the compar-
ison between the deep learning model with boosting strategy (without comorbidity
variables) and the models with boosting strategy (with comorbidity variables). The
best results are related with models with boosting strategy (with comorbidity vari-
ables): the Root Mean Squared Error was reduced by 95.93%, the Mean Absolute
Error was reduced by 97.66%, the Squared Error was reduced by 99.88%, the Rel-
ative Error Lenient was increased by 11.12%, and the correlation was reduced by
65.57%
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Performance measure
D.L with boosting

without comorbidity

D.L with Boosting

with comorbidity
% of improvement

Root mean squared error 40716937.18 1655322.182 95.93%
Mean absolute error 11527546.61 269225.747 97.66%
Relative error lenient 0.6636 0.7374 -11.12%

Squared error 2.37334E+15 2.7401E+12 99.88%
Correlation 0.61 0.21 -65.57%

Table 6.31: Comparison of D.L boosting strategy without comorbidity with Boosting
with comorbidity variables

The methodology used in this study shows a sequential decrease in prediction
errors of the pharmaceutical expenditure. For example, the combination of DL
with feature selection allows to reduce the mean error in absolute values from COP
$ 15.544.911 to COP $ 12.227.186 then after implementing the boosting strategy
this value were reduced to COP $ 11.527.546 Finally, with the addition of the
comorbidity variables, this error was substantially reduced to COP $ 269.225 or
COP $ 252.715 for the GLM model, which are reasonable prediction errors given
the range of pharmaceutical expenditure analyzed and its mean that is around COP
$ 18.657.000.

6.5 Conclusions

In this chapter is analyzed the use of machine learning models for predicting the
pharmaceutical expenditure of a chronic disease as Diabetes by using an anonymized
database of a hospital. In a �rst stage, di�erent machine learning models were used
and their performance indicators were analyzed. Some of these performances were
improved trough the use of the feature selection method, nevertheless the variability
were still high. For this reason, a boosting strategy was used combining the machine
learning models with decision trees obtaining an improvement in the performance
indicators and where the deep learning model obtained the best results. Also, an
optimized support vector machines model was developed �nding improvements in
the prediction of the pharmaceutical expenditure. In a second stage, new variables
of comorbidity such as the number of comorbidities and the Charlson index were
calculated and added to the database, the experimentation was repeated by using the
same models of the �rst stage. The results showed that the performance measures of
some machine learning models were improved with and without boosting strategy,
this leads to conclude that the inclusion of these comorbidity variables allows gaining
better understanding and prediction of the pharmaceutical expenditure. In this way,
the models used in this chapter can be used as a basis to estimate the pharmaceutical
expenditure for illnesses classi�ed as high cost for the health systems.
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This chapter presents the application of two machine learning models combining
the seasonal epidemics information and the consumption of medicines within hos-
pitals. Two di�erent models have been used: Neural Networks and Support Vector
Machines in order to estimate the use of medicines in hospitals in the case of seasonal
epidemics based on public database in Colombia. Di�erent metrics to compare the
performance of both models have been used.

7.1 Introduction

From the development of computers and mathematical models, applications of fore-
casting models in di�erent hard sciences have been developed for trying to predict
the future and therefore try to adapt to this circumstance. The main importance
of forecasting is to support decision makers for planning, make decisions and for-
mulate strategies in high and complex uncertainty environments [Hogarth 2009]. In
this way, hospitals face a high uncertainty to planning its resources mainly because
the increasing demand [Ivatts 2002]. Challenging decisions faced by hospitals cover
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the providing of better healthcare service to patients such as admissions and med-
ication care with several resource constraints and the minimization of the overall
costs [Srikanth 2017].

Several factors can a�ect the health of people and therefore the demand of
medicines and treatments in hospitals. There are studies that show that climate
issues as air pollution, change of weather and others can a�ect the health of popu-
lation increasing the admissions in hospitals [Sujit K. 2014]. There are also several
variables that can a�ect the demand in hospitals as month, day of the week, holidays
and many other factors. It is also proven that epidemic seasonality a�ect strongly
the admissions in hospitals and the consumption of medicines [Chiumente 2017].

There is also an implicit importance of forecasting in the pharmaceutical supply
chain process, it is the main step for managerial decisions in logistics and supply
chain management becoming the starting point for any planning and execution
process[Merkuryeva 2019].

The main objective of the pharmaceutical supply chain is to guarantee the access
of medicines to patients. In this way is recognized that the correct estimation or
modelization of the demand is a key factor for optimizing the supply of medicines.
This becomes more critical in the case of seasonal epidemics due to the potential
shortage of medicines required to guarantee the correct service level to patients. Ad-
ditionally, forecasting medicines' consumption in seasonal epidemics could support
the Colombian regulation (law 032 2016) related with the preparation of hospitals
in seasonal epidemics. For this reason in this chapter, based on a public database,
two di�erent machine learning models: Neural Networks and Support Vector Ma-
chines are used to estimate the consumption of medicines in seasonal epidemics in
Colombia.

7.2 Background

Several methods and approaches have been developed for estimating the use and
consumption of di�erent classes of medicines. [Wettermark 2010] present a linear
regression model to estimate the sales of medicines in a hospital using a three years
sales data in ambulatory care to build a statistical model that allows to predict two
years of medicine consumption and expenditures.

A similar forecasting model was proposed by [Joppi 2015], the main idea of
this work is to estimate the impact and the forecasting of new medicines and their
impact in the national health system before they arrive into the national market.
In a similar study presented by [Guseo 2017] a methodology for making pre-launch
forecasting without explicit information about medicines is developed. By using
di�usion dynamics of pre-existing medicines, authors introduce a methodology of
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estimating a ranitidine demand in Italy.

An statistical analysis based on a Bayesian approach was developed in
[Congdon 2006]. The main idea of this work is to estimate the health demand
in regions with the objective of allocating resources. Main variables considered
were: medical specialty, patients age and area of residence and then a gravity model
is used. [Hou 2015] developed a Monte Carlo simulation, by using Crystal Ball,
authors made an analysis of warehouse capacities for Beijing in 2020.

[Li Luo 2017] use ARIMA and Single Exponential Smoothing statistical models
for predicting hospital daily outpatient visits. The model allows to predict one week
of forecast and they consider 43 weeks of observation data obtaining as result that
the combinatorial model achieve better predictions than single models with lower
values of residual variance and mean of residual errors.

[Cheng 2016] use forecasting models for developing a method applicable in med-
ical supplies for tertiary pediatric intensive care unit. The authors compare several
methods �nding that applying Croston's method combined with single smoothing
exponential method allows to obtain better accuracy. Other application of ARIMA
is presented in [Zhou 2018] where authors proposed a combination between ARIMA-
Nonlinear Autoregressive Neural Network (NARNN) models for predicting the num-
ber of new admissions inpatients obtaining good accuracy results. Also, a classi-
�cation method is developed for demand consumption allowing to minimize the
forecasting errors. Another statistical application is presented in [Jones 2002] where
authors consider the application in emergency care applying di�erent methods and
variables like illnesses, weather, seasonality and age, their method can obtain a
forecast error of 3%.

On the other hand, Machine Learning and its methods have been applied in
several applications to predict a di�erent kind of issues in healthcare. For example
in [Yangyang Ding 2018] authors develop a method for predicting mortality of pa-
tients in intensive care unit to prioritize resources and for helping doctors to make
decisions. The main idea of the method proposed is to combine extreme machine
learning method with just in time learning, the model is built with a set of 4000
real clinical records obtaining a better ROC-AUC index than those obtained in the
literature.

As a main importance duty in emergency departments is classi�cation of pa-
tients for emergency care, in [Krämer 2017] a machine learning approach for pa-
tients classi�cation in emergency care using random forest trees and judgment of
experts is developed. Also the readmission is studied with machine learning in
[Shancheng Jiang 2018]. As re-hospitalization is the main source of cost of health-
care and because of capacity in hospitals is limited, authors develop a combined
feature selection algorithms and machine learning approaches that allow to obtain
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robust predictions over a di�erent set of data.

Other application in healthcare is developed by [Mehmet Tan 2016] where a
machine learning model for predicting drug activity on cancer cell lines is presented.
The proposed model is partitioned into two stages: a preprocessing stage where
a gene selection is proposed, and the second stage use a non-linear Kernel model.
The proposed method is tested over three large datasets obtaining high performance
results compared with previous results presented in the literature. Other study of
e�ects of drugs in patients is studied in [Pierre Genevès 2018]. In this study authors
develop a method to predict complication of patients during their stay in hospitals
due to administration of di�erent drugs.

7.3 Methods

The forecasting models developed in this chapter aim to predict the use of medicines
in hospitals in the case of seasonal epidemics which are de�ned as the occurrence
of a speci�c epidemic in a given population for short periods of time [ME 2018].
This is mainly motivated due to the fact that study consumptions of medicines
in a more highly seasonal variation support the hospital's planning process and
their understanding of the e�ects of seasonal epidemics over the consumption rates,
this process could support the Colombian regulation 032/2016. To exemplify the
problem addressed in this work, based on the analysis of the database used in this
study the Figure 7.1 presents the consumption of one type of medicine over a two
years horizon, in some periods of the year there are two types of seasonal epidemics
expressed in the times of occurrence, it means a binary variable that takes the value
of 1 if there is a seasonal epidemics and 0 otherwise.

Figure 7.1: Demand of one type of medicine with two types of epidemics
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Based on the public data base used in this study, in Figure 7.1 can be observed
for one type of medicine that its consumption in the two years has a similar behavior,
also it can be observed that when some epidemic (1 or 2 or both) is present in the
time line (points with squares and/or lines) the consumption of medicines increases.
Based on this context two strategies with machine learning in order to forecast the
medicine consumption in seasonal epidemics has been used: Neural Networks and
Support Vector Machines. The methodology used in this work is presented in Figure
7.2.

Figure 7.2: Methodology

7.3.1 Data description

In order to determine what is a seasonal epidemic or an epidemiological alert, the
concept de�ned by the Ministry of health in Colombia was used, which is a public
document that establish whenever a potential risk to the health of the population
appears. This alert require the development of urgent and e�ective public health
actions.

The information related with seasonal epidemics in Colombia is available in the
website: https://www.minsalud.gov.co which contains a database of four di�erent
epidemics that are described as follows:

• Acute respiratory infection (ERA in Spanish): is a group of diseases that
occur in the respiratory system caused by di�erent microorganisms such as
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viruses and bacteria. It starts suddenly and its occurrences are no longer than
two weeks. It is the most frequent infection in the world and can produce a
variety of illnesses like a simple cold but depending on the general state of
the patient they can become in a pneumonia, otitis and/or sinusitis.

• Respiratory Syncytial Virus (VSR in Spanish): It is the virus that causes
the highest amount of respiratory infections in children under 2 years, such
as bronchiolitis or pneumonia, which are the most serious and can leave sub-
sequent sequelae in a child's respiratory system, such as wheezing, recurrent
respiratory diseases and alteration of lung function.

• Chikingunya: It is a viral disease that is spread by the bite of an speci�c
infected mosquito, that is the same vector of dengue. It is characterized by a
sudden outbreak of fever also with arthritis. Treatment focuses on relieving
symptoms because there is no vaccine against the virus.

• Dengue: It is a viral disease that can a�ect people of any age, but children
and older adults are more susceptible. It is caused by a virus transmitted
through the bite of infected mosquitoes. Dengue mosquitoes lay their eggs in
clean water tanks and any place that can store water.

The public database contains information related with two variables: First, the
variables of medicine's type consumption in a hospital located in a speci�c region
(the hospital treats patients coming from di�erent regions and can treats di�erent
types of illnesses). The hospital provides a data set that speci�es the medicines used
in di�erent years; speci�cally the quantity of four type of medicines (Acetaminofen
+ Codeina, Claritromicina, Dextrosa and Clemastina) used to satisfy the demand of
patients. Second, the variable of seasonal epidemics, it was obtained by analyzing the
reports generated by the minister of health related to the alerts of seasonal epidemics,
more speci�cally the speci�c day-week-month that a speci�c epidemic is identi�ed
and the location where it occurs, as mentioned before information related with four
type of epidemics were available (Acute respiratory infection, Respiratory Syncytial
Virus, Chikingunya and Dengue). Based on this information, the consumption
of medicines over two years were analyzed. The data base contains 2688 records
of consumption of medicines, it means 672 records for each one of the types of
medicines analyzed (1 record per day per medicine).
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Variables

Table 7.1 present the description of the variables used is this study.

Variable Description Type

Type of epidemic Type of epidemic considered Binary
Period of occurrence Period of time when seasonal

epidemics
Binary

Demand of medicines Demand of medicines Integer
Duration of epidemic Periods of time of the epi-

demics
Integer

Table 7.1: Description of variables

7.3.2 Data analysis

In order to contrast how the seasonal epidemics a�ects the consumption (in units) of
medicines, boxplots that show the consumption with and without seasonal epidemics
for each medicine were built, see Figures 7.3, 7.4, 7.5 and 7.6.

Figure 7.3: Boxplot of medicines consumption with and without seasonal epidemics
for medicine 1
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Figure 7.4: Boxplot of medicines consumption with and without seasonal epidemics
for medicine 2

Figure 7.5: Boxplot of medicines consumption with and without seasonal epidemics
for medicine 3
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Figure 7.6: Boxplot of medicines consumption with and without seasonal epidemics
for medicine 4

It can be observed that for the 4 medicines analyzed the consumption of
medicines increases in seasonal epidemics epochs.

7.3.3 Neural networks

Neural Networks models are inspired in brain and its operation where the com-
ponents refers to the neurons in the brain and the synapses between them
[Stephen J. Read 2019], and the elements are nodes that represents neurons con-
nected and the weighted links between them [Dreyfus 2005]. Other element of the
neural networks is the hidden layers which transform the information of the inputs
into information used to produce the output, the main idea of the Neural Networks
is to make linear combinations of the inputs to �t nonlinear models to multidimen-
sional data [Haykin 1994].

Based on this concept Figure 7.7 presents the representation of the proposed
neural network that can be used to forecast the medicine consumption, where a
single hidden layer is used.

The representation of the neural network proposed in Figure 7.7 is composed
by neurons represented by the nodes and the arcs are the connections. The neural
network is composed by three di�erent layers (i) input layer, (ii) hidden layer and
(iii) output layer. In the input layer the input variables related with the seasonal
epidemic that a�ect the consumption of medicines are incorporated. The number
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Figure 7.7: Neural Networks for demand of medicines prediction

of input variables depends of the number of epidemics and the number of epidemics
that a�ect the consumption of medicines (correlational analysis). The hidden layer
consists in a set of hidden unobserved variables or hidden units used to obtain the
outcome [Kuhn 2013] that in this case corresponds to the consumption of medicines
in a hospital.

The main general equation used in Neural Networks is as follows:

R(θ) =
K∑
k=1

N∑
i=1

(yik − fk(xi))2 (7.1)

Where yik corresponds to the observations weighted over each arc k and fk(xi)
corresponds to the regression coe�cients of the hidden layers and connect the hidden
layers to the outcome R(θ). In this case each one of the input layers represents an
speci�c seasonal epidemics and yik is the weight of each one of these input layers
(or epidemics) over each one of the hidden layers k which transom these coe�cients
to produce the output result R(θ) which is the medicine consumption prediction.

Also, to avoid the over�tting de�ned as the adjustment of a method closely or
exactly to a particular set of data making di�cult to use the model produced to
forecasting or �tting over additional data, the equation is modi�ed as:

R(θ) + λ ∗ J(θ) (7.2)

J(θ) =
∑
km

β2km +
∑
ml

α2
ml (7.3)

Where λ ≥ 0 is the tuning parameter or the term of the regularization of the
function and λ ∗ J(θ) is the regularization function for avoiding over�tting which is
composed by the squared sums of the loss function that is the sum of the weights
of the components of the neural network.
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7.3.4 Support vector machines

Support vector machines are a supervised learning algorithms focused on classi�ca-
tion and nonlinear regression [Vapnik 2000], the main idea of support vector ma-
chines is to plot each data in a dimensional space and solve a mathematical model
that maximize the margin between the samples and the separating hyperplane where
the objective function is composed by the regularization, the classi�cation error and
the trade-o� between them [Tang 2018]. Support vector machines uses a Kernel
function to transform low dimensional input space into a higher dimensional space.

The Support Vector Machine with the objective of minimize use the following
function (Equation 7.4):

W = C ∗
N∑
i=1

L(yi, F (xi)) +
P∑
j=1

B2
j (7.4)

Where xi corresponds to the inputs in this case the seasonal epidemics inputs,
L(.) is the loss function, B are the coe�cients of the regularization term when
considering P predictors (the predictors are associated with the seasonal epidemics
inputs) and the constant C is the error penalty of the model. Also, the function
F (.) is a prediction equation for the demand of medicines that can be de�ned as
follows (Equation 7.5):

F (x) =
N∑
i=1

αi ∗ ϕ(x) +B0 (7.5)

Where αi is the linear kernel function used to transform the input data to the
required forms of relationships and B0 a constant.

7.4 Performance measures

In order to avoid over�tting considered as the tendency of the machine learning
and statistical models to �t the train sample extremely well, some data is used for
training the algorithm, and the rest is used for testing its performance [Tea 2017].
Therefore, the data set used in this work is split 80% for the training sample and
20% for the testing sample.

To determine the e�ectiveness of the algorithms, the following accuracy measures
has been calculated:

• Root Mean Squared Error (RMSE): is a measure of the di�erences between
the predicted values of a model and the observed values that is considered as
the standard deviation of the residuals. This measure is calculated as:

1

n
Σn
i=1(yi − fi)2

.
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• Mean Absolute Error (MAE): is the average distance between each the ob-
served value and the predicted value. This measure is calculated as:

1

n
Σn
i=1|yi − fi|

.

• Gap: determines how close is the predicted value against the observed value.
The average gap over the predicted values has been calculated as a percentage.
This measure is calculated as:

1

n
Σn
i=1

yi − fi
yi

Where n is the number of observations, yi the observed value and fi the
predicted value.

7.5 Experimentation and results

Four di�erent types of medicines have been selected and tested using the two di�er-
ent machine learning models: Neural Networks and support vector machines. Re-
sults are presented in Table 7.2. For each type of model and each type of medicine,
the performance measures mentioned before are calculated.

Neural Networks
Medicine RMSE MAE Std Error Mean Mean Predicted Gap

M1 483.99 425.43 80.10 4428.04 4412.07 -0.62%
M2 6.54 5.12 1.53 20.21 21.60 -13.95%
M3 28.93 22.54 5.33 23.83 26.43 -31.21%
M4 3.6 3.02 0.63 5.29 5.21 -21.09%

Support Vector Machines
Medicine RMSE MAE Std Error Mean Mean Predicted Gap

M1 500.62 437.96 65.86 4428.04 4405.17 -0.60%
M2 6.54 5.12 1.55 20.21 19.96 -6.05%
M3 28.19 20.38 3.49 23.83 17.07 1.01%
M4 4.38 3.45 0.45 5.29 4.42 -23.72%

Table 7.2: Comparative performance of the machine learning models

From this results it can be concluded that for medicine 1 better results of RMSE
and MAE are obtained by the neural network model nevertheless the standard error
and the gap are performed better by the support vector machines algorithm, also the
mean of the predicted values performs better on the Neural Networks with 0.36%
of gap. In both models for medicine 1 the average gap underestimate the predicted
values with -0.62% and -0.60 respectively. For medicine 2 results of RMSE and MAE
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are equal from both models (Neural Networks and support vector machines), the
standard error presents a lower value in the Neural Networks model but with a little
di�erence between them -1.53 versus 1.55- for the mean predicted and gap there are
di�erences between the results of both models and the best performance is obtained
by the support vector machines model with and underestimated gap with -6.05%
over and overestimated gap of 13.95% generated by the Neural Networks, also the
mean predicted is closer in support vector machines with -1.24% versus 6.88%.

For medicine 3 results show that except for the mean predicted, the results
obtained for the support vector machines model improve those obtained by the
Neural Networks model, in fact the gap is within 1.01% in SVM while in Neural
Networks is -31.01%. In the case of the mean predicted, Neural Networks results
are 10.91% closer to the real mean compared with -28.37% obtained by the SVM
algorithm. Finally, for medicine 4, RMSE, MAE, mean predicted and the gap
presents lower values in the results of the Neural Networks, while the standard error
presents a lower value in the SVM model.

In order to compare the results provided by the Neural Networks and support
vector machine (SVM) models, box-plots of real data and predicted values of each
medicine are presented in Figures 7.8, 7.9, 7.10 and 7.11 for medicines 1, 2, 3
and 4 respectively. It is clear that for medicines 1, 2 and 3 the mean obtained by
SVM is closer to the mean of the real data, for medicine 4 the mean obtained by
the Neural Network model is closer to the real data.

Figure 7.8: Boxplots of real data and predicted values for Neural Networks and
SVM for medicine 1
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Figure 7.9: Boxplots of real data and predicted values for Neural Networks and
SVM for medicine 2

Figure 7.10: Boxplots of real data and predicted values for Neural Networks and
SVM for medicine 3
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Figure 7.11: Boxplots of real data and predicted values for Neural Networks and
SVM for medicine 4

Finally, Figures 7.12, 7.13, 7.14 and 7.15 present the comparison of the
estimation over time of Neural Networks and SVM models for medicines 1, 2, 3 and
4 respectively. It can be concluded that results for both models generates under and
over estimation of the consumption of medicines. Graphically it seems that Neural
Networks capture better the epidemiological peaks than the SVM model however
both models capture the seasonal behavior.

Figure 7.12: Estimations produced by machine learning models for medicine 1
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Figure 7.13: Estimations produced by machine learning models for medicine 2

Figure 7.14: Estimations produced by machine learning models for medicine 3
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Figure 7.15: Estimations produced by machine learning models for medicine 4

The Machine Learning models used in this study to predict medicines' demand
in seasonal epidemics work reasonable well with medicines with high consumption
values, for example for the medicine 1 which has the highest demand, the mean error
in absolute values is 425.43 units using Neural Networks and 437.96 using Support
Vector Machines, which are reasonable prediction errors given the range of medicine
consumption and its mean that is around 4428.04 units for the seasonal epidemics
analyzed. However, for medicines with low consumption values, the prediction errors
are high.

7.6 Conclusions

In this chapter, supervised machine learning models have been used to estimate
the consumption of medicines within hospitals, more speci�cally Neural Networks
and Support Vector Machines. For the learning process the seasonal epidemics and
the consumption of medicines in hospitals obtained by a speci�c hospital data and
public data alerts of seasonal epidemics has been used.

Di�erent metrics for comparing the performance of both models have been used:
root mean squared error, mean absolute error, mean predicted and the gap, also the
graphics for comparing predicted values and the real values are presented. It can
be found similarities in the performances of both models where both are useful for
predicting the consumptions of medicines, in some metrics the neural network obtain
better results than support vector machines but this not occurs over all metrics.
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In conclusion, even that estimation of consumption of medicines within hospitals
is a complex and challenging task, machine learning models considering seasonal
epidemics enhance prediction accuracy of the demand of medicines within hospitals.

A direction of future research will include other type of factors that not only
consider the seasonal epidemics and therefore could help to improve the forecasting
process in non-epidemic seasons. This will introduce the use of new type of data
such as: patients pro�les (age, gender,...), weather, among others.
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Conclusions

In this thesis di�erent problems associated with pharmaceutical supply chain, mak-
ing emphasis in the hospital's echelon, have been addressed using di�erent method-
ologies of operational research, simulation and machine learning approaches which
allow an appropriate representation of the real situation under study and to support
the process of decision making in this context.

In this way, in chapter 3 through a conceptual modeling framework of the phar-
maceutical supply chain in hospitals by using causal loop diagrams and a simulation
model based on system dynamics was possible to understand the behavior of supply-
ing medicines to patients and the behavior of the pharmaceutical costs in hospitals,
enabling to contrast the reimbursement value regulated by governmental policies
with the costs associated with the logistic process of medicines administration in
the hospital. In the same sense there are some illnesses that must be treated as
special due to its complexity of treatments and the high costs that represents to
the health system, for this reason, in chapter 6 machine learning approaches and
combined methods were used to predict the pharmaceutical expenditure in a speci�c
case of a chronic disease (diabetes). In this analysis the impact of the comorbidity
in the performance of the machine learning models to estimate the pharmaceutical
expenditure was analyzed. These models can be used as a basis to evaluate the
governmental policies in terms of reimbursement prices of medicines and the partic-
ular conditions of the hospitals helping the managers of health systems to support
decisions in the managing of medicines.

From tactical and operational point of view, in Chapter 4 mathematical models
based on a simulation-optimization approach were developed as decision tools to
coordinate logistic decisions of medicines supply in hospitals taking into account
the sources of uncertainty and other elements related with legal regulations. The
optimal policies obtained by these models could improve the managing of medicines
by reducing the total logistic costs and help to de�ne policies for negotiation with
medicine suppliers in terms of the medicines expiration dates, emergency purchases
prices and lead times, in order to reduce the operational costs.

From a strategic point of view, in Chapter 5 deterministic and stochastic op-
timization approaches were used to determine con�gurations of location-allocation
of pharmaceutical robots in a network of hospitals considering constraints related
with the operation of preparing and distributing unit-doses and prescriptions, tak-
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ing into account the uncertainty of the demand of medicines and the multi-source
resilience strategy to avoid the risk of centralized distribution processes of medicines
and prescriptions. These models can support strategical and operational decisions
in a context of coordination and collaboration between hospitals with the purpose to
guarantee an adequate service level to the patient and to and improve the e�ciency
of the system.

Finally, in Chapter 7 machine learning models are used to estimate the use of
medicines in hospitals in the case of seasonal epidemics, by using the data related
with medicine's type consumption in hospitals of public databases in Colombia and
epidemiological alerts. These models can help decision makers to manage the un-
certainty associated to the consumption of medicines in a high variable seasonal
epidemic, allowing a better planning of supply of medicines and management of
budget.

Perspectives

Future perspectives of research are related with the inclusion and analysis of
di�erent information of some of the echelons of the pharmaceutical supply chain,
for example economic factors and policies related with pharmaceutical companies
or distribution of medicines in a global market, to determine their impact in the
chain and thus on the health system and establish strategies of collaboration and
coordination between the echelons of the chain and coordination with governmental
agencies in order to generate strategies and policies for sustainable health systems
in terms of costs, coverage and quality of care for people and economical bene�ts
for the echelons of the chain.

On the other hand, it could be interesting to characterize and optimize the
pharmaceutical supply process of high costs medicines and/or those with special
features such as oncological medicines or personalized medicines.

Research about the development of methods to combine machine learning and
optimization approaches in order to �nd optimal solutions in a context of uncertainty
with a high volume of data. In this way, for example the study of generic medicines,
their e�ectiveness on patient health, and their impact in the total cost could be
analyzed.

Finally, an analysis of the impact of new information and communication tech-
nologies and new logistic strategies in the pharmaceutical chain can be developed.
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Medicine-Supplier P-Values - Lead Times P-Values - Costs
Medicine 1-Supplier 1 0.567 0.232
Medicine 1-Supplier 2 0.742 0.444
Medicine 2-Supplier 2 0.281 0.074
Medicine 2-Supplier 1 0.673 0.577
Medicine 3-Supplier 2 0.0373 0.685
Medicine 4-Supplier 3 0.0616 0.191
Medicine 5-Supplier 4 0.0486 0.462
Medicine 6-Supplier 4 0.0651 0.15
Medicine 7-Supplier 4 0.0792 0.149
Medicine 8-Supplier 4 0.0872 0.62
Medicine 9-Supplier 5 0.712 0.232
Medicine 10-Supplier 6 0.752 0.737
Medicine 11-Supplier 1 0.008 >0.75
Medicine 12-Supplier 2 0.0925 0.0935
Medicine 13-Supplier 2 0.0458 0.38
Medicine 14-Supplier 2 >0.005 0.0643
Medicine 15-Supplier 7 0.0347 0.232
Medicine 16-Supplier 8 >0.005 0.678
Medicine 17-Supplier 9 0.0478 0.678
Medicine 18-Supplier 1 0.0243 0.38
Medicine 19-Supplier 1 0.0153 0.0166
Medicine 20-Supplier 10 0.345 0.128
Medicine 21-Supplier 1 0.0768 0.504
Medicine 22-Supplier 2 0.0777 0.678
Medicine 18-Supplier 2 0.157 0.0272
Medicine 19-Supplier 2 0.006 0.232
Medicine 21-Supplier 2 0.0188 0.0838
Medicine 22-Supplier 1 0.0229 0.0643

Table A.1: Chi Square test results lead times and cost of medicines
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Medicine P-Value Mann-Kendall test Z value Laplace test
Medicine 1 9.03E-12 10.02
Medicine 2 4.22E-11 3.49
Medicine 3 8.83E-11 2.07
Medicine 4 3.13E-11 2.04
Medicine 5 1.98E-11 -2.02
Medicine 6 1.06E-11 16.87
Medicine 7 1.06E-11 13.16
Medicine 8 1.45E-11 11.20
Medicine 9 1.69E-11 1.99
Medicine 10 2.29E-11 4.14
Medicine 11 8.36E-11 -10.08
Medicine 12 5.58E-11 -3.07
Medicine 13 8.99E-11 -29.99
Medicine 14 1.98E-11 4.57
Medicine 15 1.43E-11 -17.74
Medicine 16 1.34E-10 5.77
Medicine 17 1.06E-11 7.67
Medicine 18 9.03E-12 18.80
Medicine 19 1.45E-11 5.36
Medicine 20 1.24E-11 3.50
Medicine 21 1.68E-11 2.25
Medicine 22 9.03E-12 9.34

Table A.2: Mann-Kendall and Laplace tests results
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